
r 4)

Experimental Studies of Sputtering on Zirconium
Analyzed using Modified Roosandaal Sanders Theory

by

Paul Robert Schomber

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

DTIC
ELECTE
MAY1 8 1995

ET

University of Washington

1995

This document has beeto approved
for public release and sal«; ita
distribution is unlimited. '"r

Approved by ß.j.<0*&-
(Chairperson of Supervisory Committee)

Program Authorized to Offer Degree

Date

19950517 097

Doctoral Dissertation

In presenting this dissertation in partial fulfillment of the requirements for

the Doctoral degree at the University of Washington, I agree that the Library

shall make its copies freely available for inspection. I further agree that

extensive copying of this dissertation is allowable only for scholarly

purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law.

Requests for copying or reproduction of this dissertation may be referred to

University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor MI

48106, to whom the author has granted "the right to reproduce and sell

(a)copies of the manuscript in microform and/or (b) printed copies of the

manuscript made from microform."

Signature

Date

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

PuDfcc TDOa.nc Du'orn (0r :n,i collection 01 >n1otm*:.or .1 eHimalee <o r-.eragr : nour per tripor-^. incluam; tne tim* 1or reviewing innruaions. searching e*i«ing eat« iourr.ei.
OMtvr.no »no rnainta.nmo the d>U neeöed. »na competing anc rev.e~.ng the collection of iMormation. SenO COmmenlv regarding this burden estimate or any Olherasoe-ct Ol this
collection Of information incluomg vugont.ons tor reducing th„ Duroen. ie Wash.nglo" »tMoujntri Service». D.rectorate for information Operation» »no Report: 1215 Jetterwn
Davn. Highway Suite 1204 Arlington VÄ 22202-O02, ana to the Office o' Miwontifti and Budget. Paperwor» Reduction Pr0)eq (07QA-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

-C-r i V-JG, OA^' r<:0 r\~iO -mr\
4. TITLE AND SUBTITLE

JE ^P^r>v «w^V^, -j lud i t?s tf P- 5PJ'++^r ' ^ O/

6. AUTHOR(S)

V V^O I V-, 5^W&or>\a^
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Students Attending:

ORING/MONITORING AGENCY NAME(S) AND ADDRES 9. SPONSORING/MONITORING

DEPARTNEMT OF THE AIR FORCE
AFIT/CI
2950 P STREET, BDLG 125
WRIGHT-PATTERSON AFB .OH 45433-7765

ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER
AFIT/CI/CIA

35-005 k
10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release IAW AFR 190-1
Distribution Unlimited
BRIAN D. GAUTHIER, MSgt, USAF
Chief Administration

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DTIC mLljm HOOTED 5

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

-Z.Z1
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 75*0-01-280-5500 Standard Form 298 (Rev 2-89)

University of Washington

Abstract

Experimental Studies of Sputtering on Zirconium Analyzed using

Modified Roosandaal Sanders Theory

By Paul Robert Schomber

Chairperson of The Supervisory Committee: Professor Robert O. Watts

Department of Chemistry

An ion optics system utilizing a wein filter velocity selector has been

modeled and characterized for use as an ion source for an instrument to

measure high resolution angular distributions of sputtered neutral atoms.

Laser induced fluorescence detection techniques are used to measure ground

state and first excited state sputtering angular distributions on a

polycrystalline zirconium foil using argon and nitrogen sputter gases. The

incident ion beam impact angle has been varied from 15 ° to 75° as measured

from surface normal and the wein filter velocity selector has been used to

select N2
+ and N+ ion beams from the nitrogen ion beam.

The experimental data gathered are compared to Roosandaal Sanders

analytical sputtering theory along with data on xenon and neon. Roosandaal

Sanders theory reproduces the near surface normal sputtering behavior but

rapidly breaks down as the incident ion beam impact angle moves toward the

surface. Modifications to the Roosandaal Sanders equation to introduce

adjustable fitting parameters and non-linear least squares fitting of the

experimental data to these parameters has been accomplished. The results

are discussed relating the fitting parameters to physical constants based in

Roosandaal Sanders Theory. Discrepancies in the theory are addressed with

extensive discussion on ion surface interaction.

Accesion for

NTIS CRA&I
DTtC TAB
Unannounced
Justification

By
Distribution/

i-
a
a

Availability Codes

Dist

f\l

Avail and/or
Special

TABLE OF CONTENTS

List of Figures Hi

List of Tables vii

CHAPTER 1. INTRODUCTION AND THEORETICAL MODELS OF SPUTTERING 1

History and Early Theory 2

Three Regimes of Sputtering 5

Collisional Theory 7

Thomas-Fermi Potential 10

Analytical Approximations to the Thomas-Fermi Potential 14

Kinetic Energy Transfer to Target 16

Energy Loss Cross Section 18

Thompson's Theory of Sputtering 19

Roosandaal Sanders Theory 25

CHAPTER 2. EXPERIMENTAL CHARACTERIZATION AND PROCEDURES 30

Ion Systems -Hardware Specifications 30

Simion Simulations 35

Extraction conditions 36

Wein Filter parameters 38

Ion Beam Focusing 42

LIF System - Hardware specifications 44

Detection Efficiency - Zr spectroscopy 50

Fraction of atoms excited by laser 53

Fraction of atoms that fluoresce in detection volume 53

Fraction of atoms detected by photomultiplier 56

UHV Sample Chamber and Surface Characterization 57

Control Computers and Programs - Hardware 59

Programs -MasterMenu 59

Auger program 60

Mass spectrometer program 62

Frequency Scan Program 62

Angular Scan program 63

DAC Test Program 64

BASIC Program 64

Procedures 65

CHAPTER 3. RESULTS AND DISCUSSION 68

Laser Power Saturation Determination 68

Ar* Ground State Sputtering 70

Normalized Shape vs incident ion angle 72

Roosandaal Sanders fit to raw data 73

Roosandaal Sanders Discrepancies - Peak Position 80

Roosandaal Sanders variation of U and incident ion angle 81

Roosandaal Sanders fits to forward sputtering 83

Roosandaal Sanders fitting to backward sputtering 89

Variation in nand U allowed by fitting routine 91

CHAPTER 4. NITROGEN SPUTTERING ON ZIRCONIUM 95

Nitrogen absorbates on Zirconium 95

N2
+ ground state sputtering on Zirconium 96

N+ sputtering on Zirconium 110

CHAPTER 5. SUMMARY AND CONCLUSIONS 116

Future Work 222

LIST OF REFERENCES 124

APPENDIX A - COMPUTER PROGRAMS 130

li

List of Figures

FIGURE 1. THE THREE SPUTTERING REGIMES: (A) THE SINGLE KNOCK-ON REGIME;

(B) THE LINEAR CASCADE REGIME; (C) THE SPIKE REGIME 6

FIGURE 2. SCATTERING OF PARTICLES BY A CENTRAL POTENTIAL 8

FIGURE 3. THE THOMAS FERMI SCREENING FUNCTION, O(X), AND THE POWER LAW

APPROXIMATIONS. X=R/A WHERE A IS THE SCREENING RADIUS. EACH

STRAIGHT LINE IS A POWER APPROXIMATION TO O(X) AND IS VALID ONLY FOR A

SHORT DISTANCE 13

FIGURE 4. ION OPTICS SYSTEM 31

FIGURE 5. COLUTRON ION SOURCE 31

FIGURE 6. WEIN FILTER FIELD vs. COIL CURRENT 33

FIGURE 7. WEIN FILTER SCAN OF MIXED N2
+ AND N+ ION BEAM 34

FIGURE 8. ION EXTRACTION REGION 37

FIGURE 9. EXTENDING EXTRACTION OPTIC 37

FIGURE 10. FIRST STAGE OF ION OPTICS 39

FIGURE 11. SECOND STAGE OF ION OPTICS 39

FIGURE 12. N2
+ WITHOUT MAGNETIC FIELD AND 100 VOLT E FIELD 40

FIGURE 13. N2
+ WITH 210 GAUSS MAGNETIC HELD AND 100 VOLT E FIELD 41

FIGURE 14. N+ WITH 210 GAUSS MAGNETIC HELD AND 100 VOLT E FIELD 41

FIGURE 15. SMALL APERTURE SPREADING OF ION BEAM 43

FIGURE 16. CORRECT APERTURE AND FOCUSING ON SAMPLE 44

FIGURE 17. UHV CHAMBER AND LASER SYSTEMS 46

FIGURE 18. LIF DETECTOR..... 47

FIGURE 19. SIGNAL vs. DISCRIMINATOR LEVEL 49

FIGURE 20. DISCRIMINATOR DIFFERENTIAL CURVE 49

FIGURE 21. ENERGY LEVEL DIAGRAM OF ZIRCONIUM 51

in

FIGURE 22. FRACTION OF
5
FX° ATOMS THAT WILL RADIATIVELY DECAY BEFORE

LEAVING THE DETECTION VOLUME 54

FIGURE 23. AUGER SCAN OF A DIRTY SURFACE 58

FIGURE 24. AUGER SCAN OF CLEAN SURFACE 59

FIGURE 25. AR
+
 GROUND STATE FREQUENCY CURVES 69

FIGURE 26. POWER SATURATION CURVE 70

FIGURE 27. AR
+
 SPUTTERING ON ZR (RAW DATA) 71

FIGURE 28. NORMALIZED AR
+
 SPUTTERING CURVES 73

FIGURE 29. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 15° ANGLE OF INCIDENCE.75

FIGURE 30. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 30° ANGLE OF INCIDENCE.76

FIGURE 31. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 45° ANGLE OF INCIDENCE.76

FIGURE 32. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 60° ANGLE OF INCIDENCE.77

FIGURE 33. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 65° ANGLE OF INCIDENCE.77

FIGURE 34. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 70° ANGLE OF INCIDENCE.78

FIGURE 35. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 75° ANGLE OF INCIDENCE.78

FIGURE 36. ROOSANDAAL SANDERS FITS, 15 - 75° COMPILATION 79

FIGURE 37. ROOSANDAAL SANDERS CURVES, VARYING U 81

FIGURE 38. ROOSANDAAL SANDERS CURVES, VARYING INCIDENT ION ANGLE 82

FIGURE 39. MODIFIED RS FIT, AR
+
 AT 30° ANGLE OF INCIDENCE 84

FIGURE 40. MODIFIED RS FIT, AR
+
AT45° ANGLE OF INCIDENCE 85

FIGURE 41. MODIFIED RS FIT, AR
+
 AT 60° ANGLE OF INCIDENCE 85

FIGURE 42. MODIFIED RS FIT, AR
+
 AT 65° ANGLE OF INCIDENCE 86

FIGURE 43. MODIFIED RS FIT, AR
+
 AT 70° ANGLE OF INCIDENCE 86

IV

m FIGURE 44. MODIFIED RS FIT, AR
+
 AT 75° ANGLE OF INCIDENCE 87

FIGURE 45. MODIFIED RS COMPILATION, 15 - 75° 87

| FIGURE 46. CHI vs. N FOR 70° AR
+
ON ZR 91

FIGURE 47. N2
+ SPUTTERING ON ZIRCONIUM AT 60° INCIDENCE 96

I FIGURE 48. N2
+ GROUND STATE SPUTTERING ON ZR (RAW DATA) 97

H FIGURE 49. NORMALIZED N2
+ SPUTTERING CURVES 98

■ FIGURE 50. N2
+ SPUTTERING ON ZR AT 30° INCIDENT 99

■ FIGURE 51. N2
+ SPUTTERING ON ZR AT 45° INCIDENT 100

■ FIGURE 52. N2
+
SPUTTERING ON ZR AT 60° INCIDENT 100

I FIGURE 53. N2
+SPUTTERING ON ZR AT 75° INCIDENT 101

FIGURE 54. N2
+ SPUTTERING ON ZR (RAW DATA) 103

| FIGURE 55. N2
+ SPUTTERING ON ZR (NORMALIZED DATA) 103

FIGURE 56. N2
+ IX SPUTTERING ON ZR 105

I FIGURE 57. N2
+ IX NORMALIZED YIELD 106

■ FIGURE 58. N2
+ IX MODIFIED RS FIT AT 30° INCIDENCE 107

FIGURE 59. N2
+ IX MODIFIED RS FIT AT 45° INCIDENCE 107

™ FIGURE 60. N2
+ IX MODIFIED RS FIT AT 60° INCIDENCE 108

I FIGURE 61. N2
+ IX MODIFIED RS FIT AT 75° INCIDENCE 108

FIGURE 62. N+ GROUND STATE SPUTTERING OF ZR (RAW DATA) 110

1 FIGURE 63. N+NORMALIZED YIELD Ill

m FIGURE 64. MODIFIED RS FIT TO N+ ON ZR AT 30° INCIDENCE 112

FIGURE 65. MODIFIED RS FIT TO N+ ON ZR AT 45° INCIDENCE 112

■ FIGURE 66. MODIFIED RS FIT TO N+ ON ZR AT 60° INCIDENCE

V

 113

FIGURE 67. MODIFIED RS FIT TO N+ ON ZR AT 75° INCIDENCE 113

FIGURE 68. U vs ION BEAM ANGLE OF INCIDENCE, FORWARD SPUTTERING CASE.. 118

FIGURE 69. N vs ION BEAM ANGLE OF INCIDENCE, FORWARD SPUTTERING CASE. .119

FIGURE 70. U VERSUS ION BEAM INCIDENCE ANGLE, BACKWARD SPUTTERING CASE.120

FIGURE 71. N VS ION BEAM INCIDENCE ANGLE, BACKWARD SPUTTERING CASE 121

VI

List of Tables

TABLE 1. VALUES OF A,M USED IN EQUATION 27 17

TABLE 2. VALUES OF TM 21

TABLE 3 : WEIN FILTER MAGNET AND E FIELD PARAMETERS 42

TABLE 4. MAJOR DECAY PATHWAYS OF TWO UPPER STATES OF ZR (USED IN THESIS).52

TABLE 5. FITTING PARAMETERS USING ROOSANDAAL-SANDERS EQUATION 74

TABLE 6. PEAK POSITION OF ZR SPUTTERED BY AR
+ 80

TABLE 7. PEAK POSITION VERSUS U AND INCIDENT ION ANGLE 82

TABLE 8. ROOSANDAAL SANDERS FITS TO BACK AND FORWARD SPUTTERING 84

TABLE 9. MODIFIED RS FIT TO NE
+
 AND XE

+ 93

TABLE 10. PLATEAU WIDTH AND PEAK POSITION FOR N2
+ ON ZR 98

TABLE 11. ROOSANDAAL SANDERS BEST HT PARAMETERS FOR N2
+ 101

TABLE 12. ROOSANDAAL SANDERS FITS TO CURVES IN FIGURE 54 104

TABLE 13. PEAK WIDTH AND POSITION FOR N2
+ lx ON ZR 106

TABLE 14. MODIFIED RS BEST HT PARAMETERS FOR N2
+ lx 109

TABLE 15. PEAK POSITIONS OF N+ Ill

TABLE 16. MODIFIED RS BEST FIT PARAMETERS TO N+ 114

Vll

ACKNOWLEDGMENTS

The Author wishes to express sincere thanks to Professor Robert Watts

for his tutelage during his tenure at the University of Washington. His

patience and sense of humor have made the six years at the university

enjoyable as well as educational. Special thanks must go to Dr. Pat Jones and

Dr. Wolfram Marring for invaluable discussions and assistance on the theory

of sputtering and the operation of the sputtering apparatus.

Everyone in the Watts group is thanked for their friendship and the

numerous scientific and social discussions over the past years. The talks over

pizza or Kidd Valley burgers in the lab during late night runs will never be

forgotten.

Finally, the Author wishes to thank the Air Force for the opportunity

to pursue this degree; his parents for their support and encouragement over

the years; and most especially his wife, for putting up with him during the

writing of the thesis, proofing the various drafts, and having faith on the days

that he didn't.

vni

To my parents and my wife, Beth who always had faith in me

IX

Chapter 1. Introduction and Theoretical Models of Sputtering

Sputtering is described as the "removal of surface atoms due to
i

energetic particle bombardment." Sputter erosion is not the only observable

effect of particle bombardment nor can all erosion caused by particle
2

bombardment be classified as sputtering. Sigmund states four criteria for an

event to be classified as sputtering:

1. Sputtering is a class of erosion phenomena observed on a material surface

as a consequence of (external or internal) particle bombardment;

2. Sputtering is observable in the limit of small incident-particle current;

3. Sputtering is observable in the limit of small incident-particle fluence;

4. Sputtering is observable on target materials of homogeneous composition.

The first criterion defines the type of events that could be classified as

sputtering. The second criterion distinguishes sputtering from macroscopic

heating and subsequent evaporation of target atoms by high intensity ion

beams. The third criterion allows a sputtering event to be caused by a single

particle as opposed to blistering, which requires a threshold fluence to be

observed. The last criterion distinguishes sputtering from collision-induced

desorption. These criteria are generally accepted as the conditions which

determine if a sputtering event occurs.

The great majority of sputtering experiments to date have used noble

gas ion beams as projectile sources. There are only a handful of papers that

report the use of diatomic sputter gases, and these measure the total sputter

yield as opposed to angular distributions. ' Previous workers ' in this

laboratory have used laser-induced fluorescence to detect the angular

distributions of zirconium atoms sputtered using argon, neon, and xenon

2

gases. Zirconium was chosen as the target because its fluorescence spectrum

is well-characterized and easily reached using a standard dye laser. We wish

to expand this work to diatomic gas species and negative halide ion sources

in order to compare the excited state angular distributions with the ground

state distributions. The analytical theories of sputtering are built around the

theory of elastic collisions, yet there are a significant fraction of atoms

sputtered in excited states, providing evidence of inelasticity. If the electron

on a negatively charged ion is stripped away from the incoming ion upon

hitting the target surface, the energy of this electron will be localized in the

surface layers and the excited state yield detected should be greater than that

observed from a positively charged ion.

History and Early Theory

C

Sputtering was first observed experimentally by Grove in 1853 as the

build up of a metallic deposit on the glass walls of a discharge tube. The

mechanism for this deposit was first postulated as the heating and

subsequent evaporation of the cathode in the discharge. This was disproved

experimentally with the observation that the sputtering rate did not depend

on the temperature as long as the cathode was well below its melting point.

9
Fifty years later, Goldstein proved conclusively that the deposit was caused

by positive ions in the discharge hitting the cathode. Since that date, several

theoretical and experimental investigations have examined the sputter

process in an attempt to elucidate the various mechanisms responsible.

Stark is recognized as the first to propose a model of an individual

sputtering event occurring on an atomic scale. His 'hot spot' model treated

3

the sputtering event as evaporation of target atoms from a microscopically

small high temperature region instigated by individual ion bombardment.

Subsequently, he developed a collision theory model viewing the sputtering

event as a series of binary collisions initiated by one ion at a time. In his

collision theory, Stark applied the conservation laws of elastic scattering

along with the ideas of collisional cross sections to interpret the observed

energy dependence of the sputtering yield, Y, on hydrogen ions bombarding

metal targets. Y was observed to increase with increasing energy at low

incident ion energies. The behavior changed at higher energies resulting in a

plateau in the yield curve. Stark ascribed the low energy behavior to

increasing transfer of energy between the incident ions and the target

surface atoms. At higher ion energies, the incident ion penetrated deeper into

the target as a function of increasing energy (smaller cross section) resulting

in a smaller sputtering effect. This caused the decreasing sputter yield and

subsequent plateau observed in experiment. In the 1950's, the use of

accelerators became common and the sputtering yield was proven to always

decrease at high enough energies, lending support to this description.

Stark considered his hot-spot model and his collision theory of

sputtering as two different views of one and the same process. Other

investigators viewed them as contradictory models and in 1923 Kingdon and
12

Langmuir used Stark's collisional theory to describe the ion-induced

desorption of monolayers. Unfortunately, this led to the erroneous

impression that collision theory implied that sputtering was a single-collision

process leading to a strongly peaked angular distribution of sputtered

particles. This impression, along with the experimental observation of the
13

angular distribution following the Knudson cosine law, was considered

4

unambiguous evidence for rejection of the collisional theory of sputtering. It

14
took Wehner's observations of crystal structure effects in the angular

distributions from single crystals both to prove that local evaporation alone

could not explain the sputtering phenomena and to reinvigorate the interest

in a collisional theory of sputtering.

With experimental evidence to support both theories of sputtering,

Lamar and Compton pointed out the predominance of binary collision

processes in light ion sputtering and the predominance of local evaporation

processes in heavy ion sputtering. This led with a little rephrasing to the

modern qualitative classifications of the sputtering process. Elastic collisions,

so-called knock-on sputtering, are the basis for the current models for the

sputtering event.

Elastic collisions are most important for understanding sputtering

from metallic targets. A 10 keV Argon ion has one thousandth the velocity of

-13
the speed of light. It takes approximately 10 seconds for this ion to travel

100 A in vacuum. This is much longer than the relaxation times of conduction

-19
electrons, about 10 seconds. Therefore, in inelastic collisions where some or

most of the energy of the incoming ion is used to excite the electrons in the

target atoms, the energy transferred to the conduction electrons will

immediately be shared and dissipated by the other electrons, preventing any

atoms from escaping.

Three Regimes of Sputtering

Examination of the behavior of sputtering events has led to the

qualitative separation into three sputtering regimes: 1) the single knock-on

regime, 2) the linear cascade regime, and 3) the spike regime (Figure 1). The

single knock-on regime (Figure la) is characteristic of low energy, low fluence

events. In this regime, the incident ion transfers energy to target atoms and

after a small number of collisions, a few surface atoms are ejected if they

receive enough energy to overcome surface binding forces. In the linear

cascade regime (Figure lb) and the spike regime (Figure lc), the recoil atoms

have enough energy to initiate second generation and higher recoils. These

secondary collision 'cascades' can also provide energy to eject surface atoms.

The difference between the linear cascade regime and the spike regime is

determined by the spatial density of moving target atoms in the cascade

volume. In the linear cascade regime, all the target atoms are at rest before

suffering a collision with either an incident ion or a secondary recoil atom. In

the spike regime, the density of collisions is so great that the atoms in the

cascade volume are already moving as the cascade develops and subsequent

collisions occur. The easiest way to differentiate between the linear cascade

regime and the spike regime is to observe the sputtering behavior of diatomic

molecules. A diatomic molecule will dissociate almost immediately after

hitting the surface. If the sputtering yield is twice the yield of the individual

ions then it is considered to be in the linear cascade regime. The subsequent

cascades generated by the two atoms are relatively dilute and can be treated

as a linear superposition of the individual ions. In the spike regime, however,

the cascades are so dense that twice the energy is shared by all the atoms in

the cascade volume as the individual ion bombardment. Depending on how

6

this energy is distributed, sputtering yields can be observed that will be

substantially higher than twice the yield of the individual ions. All the

theories and experiments summarized in this thesis will deal with the linear

cascade regime.

b) A/ 3355330 O O 0\ O O .O O^m?

o o o o \o o Jo o
o o o o P-rf> o o
o o o^o/o o\o o
O O 0^IDN0 O O O

oooooooo

o ° &mr 7zm& o o^o
o o d*°x> ja/^^c^o
o o o^o\ c^0'0 °
o o O^U o o o
oooooooo
oooooooo

Figure 1. The three sputtering regimes: (a) The single Knock-on regime;

(b) The linear cascade regime; (c) The spike regime

Collisional Theory

Since sputtering theory has borrowed much of its formalism from

collisional theory, an examination of some of the common tools and analytical

techniques used in the theory is useful. The approach used in this thesis will
1 ft 7

mirror approaches used by both Sigmund and Li. Sputtering involves high

energy collisions occurring on an atomic scale; thus, classical mechanics is

used to describe the behavior of the colliding particles. In elastic binary

collisions, the motion of two different particles interacting through a central

potential V(r12) can be transformed into an equivalent representation

involving the center of mass motion and the relative motion of the two

particles. In the absence of external fields, the center of mass moves at a

constant velocity and the dynamics of the collision can be determined
17 18

completely by the relative motion of the two particles. ' This motion is

equivalent to the motion of a single particle of mass (I = —— moving m a

coordinate system fixed on the center of mass and subject to a central force.

Figure 2. Scattering of particles by a central potential.

To examine the behavior of particles scattered by a central field, that is,

to follow the motion of these particles, we need to use a fundamental concept

of scattering theory, the cross section (Figure 2). Under an atomic collision

process involving projectile and target particles, the average fraction of

projectile beam particles hitting a target of thickness x, density N and

experiencing a collision can be characterized by its cross section a such that

equation 1 holds.

(fraction beam particles colliding with target) = N x c (1)

Additionally, when, N x cr « 1 equation 1 represents the probability that a

collision will occur between beam atoms and homogeneous randomly

distributed target atoms before the beam atoms penetrate a path length x into

the target. Analogously, the probability of a particle being scattered into a

solid angle element dQ. at Q can be written as

/~% ,~ <#V(# of particles scattered into dQ. at Q per unit time)
a{Q.)dQ. = — - - - (2)

/(incident flux density)

c(Q,)dQ is called the solid angle differential scattering cross section or the

differential scattering cross section. Examining Figure 2, it is obvious that a(Q)

is independent of the azimuthal angle <|>. Therefore, a polar angle differential

scattering cross section is defined as

o(e)de = ja{Q.)sin&ded<\> = 2na(Q.)sin QdQ (3)

The number of particles scattered into a ring dQ centered at 0 is

dN = IlKbdb = ia{e)de (4)

where b is the impact parameter, the distance of closest approach of the two
19

particles if they cannot interact with each other. Combining equations 3 and

4, the differential cross section can be related to the impact parameter by

v{Q)de = 2%b—d® (5)
dQ

The impact parameter and the center of mass scattering angle can be related

to the potential using the conservation of energy and angular momentum to
20

obtain the classical deflection function:

Q = K-2b j r~2 V(r) b i\-Yi
dr

10

(6)

where Er is the relative kinetic energy of the collision and rmin is the classical

turning point determined by calculating the largest positive root to the

equation

V(r) b2 =Q (7)

Thomas-Fermi Potential

The potential energy function used most extensively in analytical

theories is the power approximation to the Thomas-Fermi potential. The

21,22
Thomas-Fermi potential is based on the Thomas-Fermi theory of atoms,

where the electrons in an atom are distributed according to the Fermi-Dirac

distribution function:

/ =
((E-e)

e kT +1

V

(8)

J

where e is the chemical potential, T is the temperature, and k is the

Boltzmann constant. It is instructive to examine this equation more closely in

the zero temperature limit. At absolute zero, all states with energy less than e

will be occupied and all states with energy above 8 will be unoccupied, e has

11

the properties of a cutoff energy and the Pauli exclusion principle forces the

electrons to occupy all states from the ground state to the state with energy e.

The total energy of an electron is composed of the sum of its potential and

kinetic energies. It can be written as

1 2M w

where Va(r) is the electrostatic potential energy of a test charge located a

distance r from the nucleus and PF is the Fermi momentum, the maximum

momentum of the electrons. Treating e as a constant, the potential energy can

be written as V(r)=V1(r)-e. The total number of electrons is equal to the

integral of the density of states in wave vector space from k = 0 to kf. This

allows the Fermi momentum to be connected to the number density of

electrons through

PF(r) = (3h3K2p(r)f3 (10)

Poisson's equation can be used to relate the charge density -ep to the

electrostatic potential -(l/e)V(r)

V2V(r) = - 4ne2p(r) (11)

Equations 9-11 can be combined to form a differential equation for the

potential energy function

Upon making the following change of variables,

the so-called Thomas-Fermi equation results

with the boundary conditions

12

1 d

r dr
2(rV) = -^-T(2M)3/2(-vf/2
1 37U/T

(12)

r =
(37t)/3 n Z-K

27A Me2
X = 0.885a0Z /3X = bX (13)

rV = -Zel<& (14)

 = <J)/J

dx2 4x
(15)

O(0) = l,$(°o) = <D'(oo) = 0 (16)

Equation 15 cannot be solved analytically but can be solved numerically.

Using equation 14, the Thomas-Fermi potential for an isolated atom can be

determined:

V(r) =
Ze2 Jr\

-<f>
bj

(17)

13

Equation 17 has the form of a coulomb potential multiplied by a screening

function <J>. The function 0 represents the screening of the test charge from

the nucleus by the other electrons in the atom with b representing the

screening radius. A tabulation of the numerical solution to O — can be

23 (r \
found in Torren's book. A plot of <E> — along with various power law

approximations to the function is included as Figure 3.

u

IE-09
0.1

Distance (angstrom)
10

Figure 3: The Thomas Fermi screening function, 4>(X), and the power law

approximations. X=r/a where a is the screening radius. Each straight line is

a power approximation to O(X) and is valid only for a short distance.

14

The potential energy function calculated above works for the case of an

atom and an isolated electron. In sputtering, we are interested in the

23
potential between two atoms. Firsov applied Thomas-Fermi theory to

diatomic systems and found that if the screening radius is written as

a = 0.8853a0 Z{2 + z(2 (18)

the potential can be approximated to first order by the Thomas-Fermi

equation (equation 15). Therefore, for a diatomic system the Thomas-Fermi

potential can be written as

V(r)=z&Z-JL\ (19)

where r is now the interatomic distance. This equation must also be solved

numerically. The one caveat to this approach is that the potential is only

valid for short interatomic separations, r < 1.0 Ä.

Analytical Approximations to the Thomas-Fermi Potential

Because the Thomas-Fermi potential is very cumbersome to solve

numerically for most applications, several analytical approximations for the

screening function have been developed. Some of the more common ones

include the Sommerfield approximation, the Bohr screening function, the

15

Moliere screening function, the Lenz-Jensen screening function, the Krypton-

Carbon(KR-C) screening function, and various power law approximations. A
7 23

full description of these functions are given elsewhere.

All analytical theories of sputtering to date use a power law

approximation to the Thomas-Fermi potential. In this potential, the

interatomic separation of the two atoms are divided into several segments

and each segment is approximated by a power function of (r/a);

a) s

-(5-1)

(20)

where k and s are constants that depend on the interatomic distance r. This

is the potential plotted in Figure 3 along with the numerical solution to the

Thomas Fermi potential.

Using the power law potential in equation 6, the integration can be

solved exactly to give

f ~^s

0 = _üC£ YA a , (21)

\b.

where ys = — B\ —, = - J with B(m,n) corresponding to the Beta

25 aE (2A 2A\'2

function, e = r—=- and a = 0.8853a0 Z{3 + Z<3 (a is the Bohr radius

= 0.529Ä). Equation 21 can then be inserted into equation 5 to give

16
9

db const • a
M@)=2Kb^=j^ <22)

Kinetic Energy Transfer to Target

In sputtering, we are interested in the transfer of energy from

bombarding particle to target. In other words, we want to calculate the

energy loss cross section. This can be calculated from the angular cross section

once a relationship between the transferred energy and the center of mass

scattering angle is established. In the special case of a moving atom (1)

colliding with a stationary atom (2), it can be shown that the maximum

energy transferred from atom 1 to atom 2 is given by

Tm=7^^-TE = yE (23)
(M1+M2Y

after undergoing a head-on collision. The transferred kinetic energy T and

the center of mass scattering angle can be related through this energy as

T = Tm sin m , 2j (24)

When T« Tm, this equation points to 0 being small, and T can be

approximated by

17

T -T
0'

(25)

With this relationship and the angular cross section in equation 22, the energy

loss cross section can be easily calculated.

da(T)dT = da(e(T)).\^
dT J

dT =
C„

F T m+\ dT (26)

27,
where m=l/s and Cm is given by

Cm = —Xa m 2

'M,V*

VM2j

'2Z{Z2e

V a

2m
(27)

Xm is a dimensionless function of the parameter m that varies from high

energies; s = 1, m = 1, X = 1/2, to very low energies; s = °°, m « 0, X = 24.

Several values of X are collected in Table 1. m

Table 1. Values of A.m used in Equation 27.

K 0.500 0.327 1.309 2.92 15 24

m 1.000 0.500 0.333 0.191 0.055 0.000

18

Equation 26 was derived in the limit of small angle scattering corresponding

to soft collisions. Using the power law potential, it has been shown to be

remarkably accurate even up to high energies.

Energy Loss Cross Section

Two additional quantities needed to develop the theory of the linear

cascade are the nuclear stopping cross section and the nuclear stopping power.

The mean energy dE lost to collisions over a path length dx is

dE = Ndx\d<5{T)TdT = NdxSn (E) (28)

where Sn(E) is defined identically as the nuclear stopping cross section.

Examining equation 28 and dividing both sides by dx gives the nuclear

dE
stopping power — = NSn (E). Combining this relation with equation 26

dx

gives the nuclear stopping power calculated using a power law potential:

,F iE yE A/v1_mr
— = N f Tdc(T)dT =N\T

m x1 dT =^- ^LE
l~2m (29)

dx o o EmTm+l \-m

With the calculation of the energy loss cross section, we have the tools

necessary to treat the phenomena observed in the linear cascade regime. The

theoretical approach used to investigate the linear cascade regime starts with

the separation of the sputtering event into two phenomena. First is the

creation of the primary recoil atoms by the incident ion. Next, the secondary

19

collision cascades develop until some of the atoms are ejected through the

98 29 30
surface. This is the approach followed by Almen and Bruce, Thompson,

31
and Sigmund. Thompson's derivation will be followed in this thesis.

Thompson's Theory of Sputtering

Thompson based his theory on atomic scattering theory and results

from radiation damage studies. He made four initial assumptions: (1) the

target was completely amorphous with randomly distributed atoms; (2) the

target was infinite for the purpose of developing collision cascades and semi-

infinite with respect to atom ejection; (3) only elastic binary collisions occur;

and (4) the momentum distribution of high generation recoil atoms is

isotropic. With these assumptions, Thompson was able to derive a theory

that produces the explicit angular and energy distributions of sputtered

atoms.

Thompson started with the idea of an ion source supplying a flux, *F

ions per second, of energy Ex to an infinite imaginary surface in an infinite

target. The density of primary recoils created per unit time with recoil energy

in the range dt at T can be expressed as

p{El,T)dt = Ny¥da{El,T)dT (30)

where N is the number density of target atoms. The above equation assumes

that the ions pass through the surface only once. This assumption is valid for

target ion interactions where the mass of the ion is much large that the target,

20

M1»M2. In light ion sputtering of heavy target atoms, back reflection of ions

can contribute significantly to the sputtering yield and equation 28 must then

be integrated over ion energy and direction.

Every primary recoil will generate secondary collisions and

subsequent cascades if the energy is high enough. Neglecting the initial surge

of ions produced when starting the ion beam and assuming a stable ion beam

is used, the ion source will rapidly form a stationary distribution of moving

atoms initiated by primary recoils. In other words, there will be a constant

number of atoms with a kinetic energy within a specified range at any time.

The mean number of recoil atoms with energy in the interval (E', dE')

initiated by primary recoils of energy T is defined as n(T,E')dE'. The total

number of these atoms per unit time and distance can be calculated from

yEi

g{El,E')dE'=dE' J n{T,E')p{Ex,T)dT (31)
E'

where yEx is the maximum energy that can be transferred in a collision and

gCE^E') represents the number of atoms generated in a unit energy interval

around E' per unit time and distance. The quantity of interest to us is G(E,E'),

the total number of atoms in the energy interval E' at any time regardless of

when they were generated. This number should be proportional to the

lifetime, x, of the atom in energy state E'. x can be defined as

T="% = »"% ■ <32>

21

where v' is the velocity of a target atom with energy E'. Multiplying g(E,E')

by x gives the quantity we were looking for:

dE , Y*l

GCE1,g') = g(£i>g')'tt*g'= Jn(r,E')p(^,r)^r (33)
v'dE'y

'dx E'

Examining equation 33, we now need expressions for both n(T,E') and

dE'/dx. The radiation damage function which calculates the number of

atoms displaced by one primary recoil is similar to n(T, E') and can be written

as

i(T,E') = Tm —
E'

(34)

The constant Tm varies with the potential similarly to the constant Xm earlier

and is compiled in Table 2.

Table 2. Values of T . m

m 0.500

0.361

0.333 i 0.250

0.452 i 0.491

0.00

0.608

The quantity dE'/dx can be calculated from equation 29 substituting E'

for E. Combining this quantity with equations 30 and 34 and substituting

them into equation 33 results in

22

G(El.E-)dE-= ('-7lr" ™ N \Tdc(Es,T)dT (35)

In most cases, E'<< yE2 and for small E' the lower limit of the integral can be

set to zero. Recalling the definition of the nuclear stopping power, the

nuclear stopping power of the ion, Sn is just N times the integral. Because

Sn is a constant for any ion target combination, and using the above

approximations, we can write

G(Ex,E')dE'=AmVsf-^; (36)

where. Am = = . GIB,, E')dE' determines the number of high m Cmyl~mN l h

generation recoils in the energy range (E',dE). Thompson's fourth initial

assumption assumes that these recoils are isotropic. In other words,

G(E{,E>,n')dE>dQ> = G{Ex,E>)dE>^- = AmVS? dE[fi2m (37)

It is important to remember that the above equation is still differential in

distance. This allows us to calculate the current of recoil atoms. Current is by

definition the number of particles per volume element moving with a certain

speed. The current of recoil atoms in the energy range(E', dE') moving in the

area element (6',d0') is

v'G^E'WdE'dn = AmVS« 4
d^Ef_i (38)

23

The flux of recoil atoms through a plane perpendicular to the flow of particles

is proportional to this current. The flux across any plane not perpendicular to

the flow of particles is proportional to the perpendicular flux multiplied by

the cosine of the angles between the two planes. Inserting an arbitrary plane

parallel to the surface inside the target and calculating the flux passing

through this plane gives

rnsft'
<&{Ex,E',W)dE'da' = AJVS™ ,, dE'dQ.' (39)

with 9' defined as the angle between a plane perpendicular to the direction Q.'

of the recoil particles and the surface plane. By geometry, this angle and the

angle between the surface normal and the direction of the recoil particles are

equivalent.

Up to this point all calculations have been solved inside the target,

hence the primes on the calculated values. Unprimed quantities from here on

will refer to values outside the sample surface. To exit the bulk, the particles

must pass through a surface and overcome surface binding forces. Thompson

used ä planer binding potential to simulate these forces. The planer binding

potential assumes all the equipotential surfaces felt by a particle leaving the

bulk and entering the vacuum are both planer and parallel to the sample

surface. This will have the effect of decreasing the vertical velocity

component of the ejecting particle upon passing through the surface. The

horizontal component will be unaffected. The vertical velocity component
1/2

will be decreased by (2U/M2) where U is defined as the surface binding

energy. The surface binding energy is the minimum energy a particle needs

24

to escape the surface. Due to a lack of alternatives, U is most often

approximated using the heat of sublimation.

Inserting a surface using the planer binding potential gives the

following relations between the energy and the sputtering angle inside and

outside the target:

E' = E + U (40)

_, ^fEcös^Q + Ü
cos 8 = , —

4E + TJ
(41)

Using these relations, the Jacobian to transform from the volume element

dE'dcosG'df to dEdcosed<|> is

J

dE' dE' dE'
dE dcosG d(|)

dcos0' dcosO' dcosG'

dE dcosG d(J)
d^' d<j)' df
dE dcosG d(|)

ZicosG

(E + f/)cos9'
(42)

Incorporating equations 40 - 42 into equation 39 and dividing by the flux of

incoming ions, we get

Y(E,Q) = AmSi; (0 Ecosö
4n(E + U) 3-2m (43)

25

which gives the number of sputtered atoms per ion, per unit energy, and per

steradian. Examining this equation, we see that the energy and angular

distributions are independent of each other with the energy spectrum

reaching a maximum at

E = —-— (44) ra 2(1-/n)

The angular distribution is cosine, peaking at surface normal, 8 = 0.

Roosandaal Sanders Theory

Using a normally incident ion beam, peaking of the sputtering yield at
32

surface normal has been observed by some researchers. Unfortunately, as

the incident ion beam moves away from surface normal, the peak in the

distribution also shifts away from surface normal as long as the energy of the

incident ion is not too large. Returning to the initial assumptions of

Thompson, this off normal peaking is thought to result from anisotropy in the

momentum distribution of the recoil atoms and the subsequent cascades.

This anisotropy would result in a "memory" of the incident ions angular

direction being partially retained by the collision cascade. Roosandaal and
33 34

Sanders ' examined this anisotropy and derived angular and energy

distributions for four different cases. Other than discarding the idea of an

isotropic momentum distribution, they used the same assumptions that

Thompson used in linear cascade theory.

The four cases considered by Roosendaal and Sanders are as follows:

26

(1) The incident ion creates primary recoils and these recoils form

subsequent cascades. The ion is ignored completely after it has finished

creating primary recoils. This follows the assumptions Thompson used to

calculate the flux of sputtered particles. The interaction of the ion with the

primary recoil can be described using a power potential with the probability

of an ion of energy Ex producing a recoil with energy T at polar angle 0 and

azimuthal angle § measured with respect to the incoming ion as

dc{T,%,$) = Am (£)r-'-m5
f pr\

COS0 -
V

]dE,
dT cose

i J

d§_

2n
(45)

The momentum density of these recoils can be written as

S(T,E',COSE',§') = C
T 3 T

■ +

lA M,
■cose

IE'2 ' 2 'X VM2
v Ei V J

(46)

where T is the energy of the primary particle, E' is the recoil energy, e' is the

angle with respect to the incident particle, and (j)' is the azimuthal angle of the

recoil. In the case of primary recoils, M1=M2 and higher generation recoils are

characterized by the angles e' and (j)' measured with respect to the primary

recoil.

(2) The incident ion can be back scattered toward the surface by target atoms

and kick out surface atoms thus acting as the primary recoil. This is

especially important for light ion sputtering when M1 < M2. Analogous to

27

case 1, the target-ion interaction can be described by a power potential to give

the following cross section:

do(T,Q,ty) = Am(E)rl-md cosG
M+M, lE-T M.-NL I E A

2M, V £ 2Af, V^-ry

dTdcosQ —
2tt

(47)

(3) When the incident ion is of low energy, all the energy will be dissipated in

the region of the surface. All ions therefore behave as primary recoil atoms.

The momentum density will follow equation 46.

(4) The last case is limited to oblique incidence collisions where the incident

ion produces direct recoils in a specified momentum interval and no collision

cascades will develop. The ion-target interaction is given by equation 45.

For cases 1-3, the energy integrated angular distribution for an ion of

energy Ej impacting a surface at Ql and transferring energy in excess of the

surface binding energy U, T'»U is

F(£,e,.,e,(t))oc 5(£,)cos0 [l + öVt/C^K-cose, -F(9) + %n sine cos<|))]

2-3cos20 cos29 / ^— 1 I I IN II I UN IF

for 0 * 0, F(0) =
2sin29 2sin0

1 + ^9 Wl-sin8
4sin20i U + sine

andY{E,Qi,Q,Q>)°cB(El)[l-S-JTJC(El)cosQi]forQ = 0 (48)

B(E1) is a global constant that depends on the energy of the incoming ion. We

are most interested in the shape of this distribution, so the exact value of B is

unimportant for us. The constant C(E1) does affect the shape and has the

following form for the cases above:

28

C(E,) =
VYX

M

M2EX

Case I

Case II

Case III

, „ „, Mx+M2 M, - M2 where g(El,T) = —! 2-+ ' 2 r -l

2Af, 2M, y£, 1 , i i J—L _ i _ Y In
I r J

(49)

The Roosandaal-Sanders theory accurately predicts the off normal

peaking of the yield curve. Unfortunately, it also inaccurately predicts a

cosine shape which is not observed in experiments. The shape in general

shows over-cosine behavior, e.g. it follows a cos 0 with l<n<3. This over-

cosine behavior is seen in both cases of normal and off normal incidence ions.

Whitaker, Li, and several other experimentalists ' ' ' have empirically

modified the Roosandaal Sanders equation to include a cos 6 term:

7(£,0,.,e,(|))ocß(£1)cos"0 [l + 6^/UC(El)(-cosQi -F(0) + %TC sinG cos<|>)]

for 9 * 0, F(9) =
2-3cos20 cos2 9 i a(

2 sin2 9 2 sinG
1 +

V

cos2 9
4sin2 9

In
1-sinG

l + sin9

and Y{E,Qi ,9,<t>) «= B(EX)[l-8Vt7C(£,)cos9,]/or 9 = 0 (50)

29

The new equation is fit to the experimentally obtained data using B(E1)/ n,

and U as fitting parameters. This approach provides reasonable fits to

experiment although the physical significance of the fitting parameters is lost.

Regardless, the convention of using B(E1), n, and U as fitting parameters will

be followed to evaluate the experimental data in this thesis.

Chapter 2. Experimental Characterization and Procedures

The sputtering apparatus can be segmented into four basic systems: (1)

the ion source and its associated optics, (2) the laser induced

fluorescence(LIF) detection system, (3) the ultra high vacuum (UHV) sample

chamber including the surface characterization/residual gas analysis

components, and (4) the master control computers with their assorted

software.

Ion Systems - Hardware Specifications

The ion optics system consists of an ion source, 2 einsel lens, a wein

filter, and several apertures and deflection plate electrodes (Figure 4). The

core component of the ion optics system is a commercial Colutron ion source

Model 101 - Q (Figure 5). The main components are a tungsten filament

cathode and a stainless steel disk anode with a 1 mm diameter central hole.

These components are mounted in a quartz glass holder assembly which

directs the flow of gas molecules across the filament. The cathode-anode

spacing is set to 6 mm and maintained by tension created by two support

wires. The filament is voltage regulated at 15 volts, 19 amps using an HP

6261B DC power supply. The anode is also run in voltage regulation mode at

75 volts, 0.5 amps using an HP6448B DC power supply. The entire ion source

and two HP power supplies are floated at the energy of interest by an Fluke

Model 415B high voltage power supply.

31

~1L
_ir

c1 c2 c3 d

I
L-, lT

il i2 i3 j m

a) cathode
b) anode
c) first einsel lens
d) apeture(ground)
e) vertical deflection plate
fj wein filter
g) apeture
h) 10 degree bend deflection plates
i) second einsel lens
j) vertical deflection plate
k) horizontal deflection plate
I] apeture
m) sample

Figure 4. Ion Optics System

INSULATOR ION
SOURCE

FOCUSING LENS
IROUCH

HEAT SINK

JL^-^ FEED-ri

SOLID
CHARGE
HOLUKR

ELECTRICAL
FEED-THROUCHS

Figure 5. Colutron Ion Source.

32

The sputter gas is introduced slowly into the source until an arc initiates and

a stable plasma forms between the cathode and anode. A stable discharge is

maintained with gas pressures between 2xl0"6 - lxlO'5 torr as measured in

the ion beam chamber (30 - 50 |X measured at the gas inlet leak valve).

Standard operating conditions and optimum long term stability of the ion

beam were obtained using an ion beam chamber gas pressure of 2.8xl0~6 torr.

The first einsel lens is used to extract the ions from the ion source and focus

the beam to the first aperture. The einsel lens consists of three cylindrical

stainless steel electrodes. The first and third electrodes are held at ground

while the voltage on the center electrode is varied. This produces a voltage

gradient and corresponding electric field that bends divergent ions toward

the center axis of the lens. The ions leave the first einsel lens and the center

section of the resulting beam is selected by the first aperture. The ions then

encounter a vertical deflection plate that centers the beam into the entrance

of the wein filter. The wein filter is composed of electromagnets and variable

electrodes in a configuration that produces crossed magnetic and electric

fields. The ions enter a region of constant magnetic field and are bent at right

angles to this field. Heavier ions moving at lower velocities are diverted

more by the field due to their increased residence time inside the field. In the

experiments described in this thesis, the wein filter electrodes were set to 100

volts and the magnetic field was tuned to the mass of interest by varying the

current entering the coils of the electromagnets. The variation of magnetic

field as a function of current was measured using a hall probe (Figure 6).

The ions leave the wein filter and encounter an aperture plate held at ground.

By varying the voltage on the electrodes, ions of a certain velocity(mass) can

be selected to pass unobstructed through the aperture plate. An experimental

scan of a mixed N2 and N ion beam is included as Figure 7 . The ions are

33

then deflected through a 10° bend and enter the UHV chamber. The ions are

refocused by a second einsel lens and deflected by a pair of vertical and

horizontal electrodes to pass through a final aperture plate before hitting the

sample. All variable voltages to the electrodes are controlled by many turn

potential meters and recorded in the lab manual on the day of the run. These

readings are compared with simulations run using the Simion ion trajectory

code which will be discussed in a later section.

tfl
<fi

O
03

Wein filter B vs I

Raw
data

■line

H

4

I (amps)

Figure 6. Wein Filter Field vs. Coil Current.

34

c o
3
Ü
_a>
a
E
<o
(A

500

450
400

350
300

250

200 --
150

100

50 +

0

0

♦
♦ ♦

* ♦

1±_ h-

0.5 1

wein filter current

♦ ♦♦

1.5

Figure 7. Wein filter scan of mixed N2 and N ion beam.

The entire ion optic system up to the 10° bend is mounted in a high

-8 -7
vacuum(HV) chamber, base pressure 10 -10 torr. This pressure is achieved

by using a liquid nitrogen trap on a Varian 6" diffusion pump backed by a

Edwards model E-2M two stage roughing pump. A Varian Turbo V-60

turbopump is connected at the bend to provide a differential pumping stage

to prevent neutral atoms from contaminating the ultra high vacuum of the

main sample chamber. The neutral atoms are unaffected by the deflection

voltages and collect at the bend elbow where they are removed by the

turbopump. The voltage source to the bend deflector plates is connected to a

medium voltage switch controlled by the TTL pulse from a Camac DAC

controller. This provides the 'flag' for the ion beam during an experiment.

35

Simion Simulations

Sputtering requires a well-defined and well-characterized ion source.

It is very difficult to develop a feel for the effects of varying the potentials on

the many adjustable electrodes present in this system. A simulation of the

entire system detailed enough to concentrate on individual components was

necessary to characterize the ion source fully. The simulation was conducted

for two purposes: (1) the parameter space of all the ion elements was

examined to find the optimum operating conditions which would provide the

maximum beam intensity on the sample, and (2) the behavior of the wein

filters was examined to verify the conditions necessary to mass resolve the

ions in a mixed beam, e.g., N+vs N£.
40

The Simion PC version 4 electrostatic lens analysis code was used to

simulate the ion optics system. With this code, the user defines a 16,000 pt

array of electrode and nonelectrode points to simulate the ion optics of

interest. The array is then numerically refined using overrelaxation methods

until the potential between points converges to user selectable limits. This

array is stored in a fast adjust file to allow easy variation of electrode

potentials and subsequent calculation of voltage contours and ion

trajectories. The Simion code does not treat space charge effects so the results

achieved will not correspond exactly to experiment but are used to find order

of magnitude corrections.

36

Extraction conditions

The first components examined using the Simion code were the ion

source and first extraction optic. Whitaker and Li measured a maximum ion

flux of 200 nA on the sample for light ion sources (e.g., Ne, Ar) without using

the wein filter. Wolfram Maring, a postdoc in the Watts group, suggested the

low beam current was caused by inefficient extraction conditions. The

extraction region was modeled using Simion and ion trajectories initiated

using starting points recommended by Coultron, the ion source

manufacturer. The potentials on the electrodes were set using the values

measured in the lab (Figure 8). As can be seen in Figure 8, the extraction

regime was very inefficient and many ions did not propagate through the

first einsel lens. The extraction optic was too far from the ion source anode.

Adding an extension piece to the extraction optic would bring the extraction

region closer to the ion source anode. The ion beam would still be tightly

compressed and subsequently focused through the aperture (Figure 9). Using

these results as a basis, a variable adjusting extension screw was designed for

the first extraction optic. Using a separation of 10 mm between the anode and

extraction optic, a doubling of the ion current was observed on the sample.

37

Figure 8. Ion Extraction Region.

/ HiiimiiHl iifTiTiiiiiiiilTI niii'iiiiTj (jiillillllllllllll^SM

Figure 9. Extending Extraction Optic.

38

Wein Filter parameters

Whitaker and Li used single component ion beams so did not use a

wein filter. Rather, they operated the ion source with all the wein filter

components grounded. A wein filter can be used to mass resolve the mixed

beam resulting from the ionization of a diatomic species or a halide salt.

During the course of mass separation, the ion beam spread out with a

corresponding decrease in intensity measured on the sample. The operating

parameters required to mass separate the ion beam with minimal impact on

the intensity transmitted to the sample had to be calculated. This data could

be efficiently gathered using the Simion program.

The limitations on the maximum array size that could be input into

the program forced us to divide the optics simulation into two parts to

achieve the resolution necessary to accurately follow the ion trajectories to the

sample. The most obvious dividing point was the 10° bend, with the first

stage consisting of the Colutron ion source, the first einsel lens, the first

vertical deflector, the wein filter and the associated apertures (Figure 10). The

second stage starts with the first aperture after the 10° bend and includes the

second einsel lens, a set of vertical and horizontal deflection electrodes, the

final aperture, and the sample target (Figure 11).

39

Figure 10. First Stage of Ion Optics.

TTTTl f

Figure 11. Second Stage of Ion Optics.

40

The behavior of the wein filter was simulated using the first stage. The

experimentally determined voltages that produced an ion beam on the

sample when the wein filter was turned off were used as the input voltages

for the trajectory calculations. N2 ion trajectories were initiated at the anode

aperture and propagated through the optics to the exit aperture. These

trajectories were saved as an input file for subsequent use as the wein filter

parameters were varied. A constant 100 volt potential, - 50 volts top

electrode/50 volts bottom electrode, was applied to the wein filters

electrodes. This caused the N2 beam to be deflected up to impact the top

electrode (Figure 12).

Figure 12. N2 without magnetic field and 100 volt E field.

A homogeneous magnetic field is manually inserted into the area

occupied by the wein filter electrodes. By varying the strength of this field,

. 41

the ion trajectories can be modified until the ions once more pass through the

exit aperture (Figure 13).

Figure 13. N2 with 210 gauss magnetic field and 100 volt E field.

Changing the mass of the ion beam causes the beam to once again be

deflected toward the wein filter electrodes (Figure 14).

Figure 14. N+ with 210 gauss magnetic field and 100 volt E field.

42

The magnetic field is then manually varied until the new mass of interest

passes through the exit aperture. The resulting values were compared to

experimentally-determined values to verify correct operation of the wein

filter. The values for N andN2 are collected in Table 3.

Table 3 : Wein Filter Magnet and E field parameters

Ion Simion(B) I Exp.(B) E-Field

N+ 145 195 100

N2
+ 210 297 100

N+/N2
+ .69 .67

The absolute differences between the predicted and measured fields are not

important. The ratio of the fields is of more interest since it represents the

separation of the two masses. The data in Table 3 reveal that these values are

in good agreement.

Ion Beam Focusing

Finally, the second stage ion optics were used to determine the correct

aperture dimensions needed to separate the UHV sample chamber from the

HV ion chamber. There are two conflicting issues influencing the choice of an

aperture size. First, the aperture acts as a controlled leak from the HV to UHV

chamber. The rate of sample contamination by background gas species is

directly proportional to the pressure inside the UHV chamber. To avoid

43

contamination of the sample during the time frame of a sputtering

experiment the aperture needs to be as small as possible. Second, the ion

beam needs to be focused through this aperture. If the aperture is too small,

the ion beam focuses at the aperture resulting in spreading out of the ion

beam at the sample surface (Figure 15). This will cause a marked degradation

in measurable current on the sample. An aperture size was chosen which

achieved minimum expansion of the ion beam and at the same time kept the

background pressure under 4x10 torr during the experiments(Figure 16).

*¥■» k TflfiTl

Figure 15. Small aperture spreading of ion beam.

44

Figure 16. Correct aperture and focusing on sample.

LIF System - Hardware specifications

The LIF detection system includes the laser systems, fiber optic

transmission cables, rotatable detector assembly, and the photo multiplier

detector (Figure 17). The laser systems consist of a Coherent 699-29 Autoscan

ring dye laser pumped by a Coherent Inova 100 Argon Ion laser. The 514.5

nm line of the Argon ion laser is used to saturate the absorption of the

Rhodamine 6G dye used in the ring dye laser for the series of experiments

covered in this paper. The 699-29 Autoscan laser is a mode locked,

continuously scanning, frequency stabilized traveling wave ring dye laser

with built in wavemeter. The laser beam is steered using two x,y adjustable

mirrors to a 1 cm focal lens and fiber optic holder mounted on two x, y, z

translation stages. The fiber optic cable is a fiberguide industries Superguide

45

G UV-Visible fiber with an inner core diameter of 50 fi and a wavelength-

range of 180-1100 nm. The fiber optic cable is threaded through Teflon tubing
41

using techniques described in Scoles. The laser is transmitted through 14

meters of fiber optic cable where it enters the UHV sample chamber through

a pilot hole drilled in a 3.25 inch conflat flange. The fiber is connected and the

corresponding hole sealed using low vapor pressure, high vacuum sealant on

both the inside and outside of the flange. The fiber optic cable terminates in

a second fiber optic holder mounted into a detector assembly that rotates

about the sample in the polar plane.

46

Stepping Motor
Ion Cleaning Gun

Steering
Mirror lens

-e—a-
FO coupler

To Ion

Source

View port

Fiber Optic
Cable

V
Steering
Mirror

Dye I-100

Figure 17. UHV Chamber and Laser Systems.

47

Optical fiber

Focusing Lens

Collimating
Apertures

pherical Mirrors

Fiber Bundle

Interaction
Region

Light Trap

Figure 18. LIF Detector.

The detector assembly is similar in construction to detectors developed

for molecular beam work by Hefter and Bergman and Shimizu and Shimizu

(Figure 18). The laser beam enters the detector assembly from the top and is

collimated by several apertures before passing through the interaction region

and exiting into a beam dump. The sputtered Zr atoms pass through the

48

detector perpendicular to the laser beam (that is, into the plane of the paper in

Figure 18), where they are excited. On the left and right of the crossing point

of the two beams are two silvered high reflection hemispherical mirrors that

collect the fluorescence into a 6 mm fiber optic bundle centered in the right

hand mirror. The focal length of the two hemispheres has been chosen to

maximize the focus of the fluorescence into this bundle. The fluorescence is

carried out of the UHV chamber by the fiber optic bundle into a cooled red-

sensitive RCA 31034-2 photon multiplier. The photomultiplier is run in

photon counting mode where each photon causes a pulse of electrons that are

amplified, discriminated, and then counted.

The current pulse from the photomultiplier is fed into a EG&G Ortec

model 9301 fast preamplifier for a factor of ten voltage gain and then into a

Ortec 9302 amplifier-discriminator. A multiturn control adjusts the

discriminator level between 50 mV and IV. This voltage pulse is then fed into

a Standard Engineering Model TS 201 timer sealer. An Ar sputtering

experiment was used to set the correct discriminator level. A 45° incident Ar

ion beam produced 470 nA of current as measured on the sample. Using the

ground state frequency of 16786.98 cm for zirconium and measuring the

sputtering yield at 45° for 5 sets of 5 second integrations produces the

following curve (Figure 19):

49

Discriminator level

20 30

#1/2 turns

Figure 19. Signal vs. Discriminator level.

Differentiating this curve produces the graph shown in Figure 20.

Q'scrim'nator level

o
(A

c
3 o

#1/2 turns

Figure 20. Discriminator differential curve.

50

Examining Figure 20, one can determine a discrimination level that retains

the majority of the signal while removing background counts caused by after

pulsing in the photomultiplier. The discriminator level was set at 15 turns.

The wavelength of the laser is controlled by the internal wavemeter of

the Autoscan laser (precision of .0017 cm). The excitation wavelength for

the Zr ground state and first excited state used in the experiments in this

thesis occur at 595.5 nm and 579.8 nm. The fluorescence wavelengths cover a

wide range, starting from the excitation wavelength. A filter pack that allows

only photons in the range 650 - 850 nm is inserted between the fiber optic and

the PMT, which filters out both photons from the incoming laser light and

long wavelength photons characteristic of thermal sources. Thus, the filter

pack greatly reduces the background due to scattered laser light (although

scattered laser light still remains the largest contributor to background

counts).

The detector is mounted on a computer-controlled rotation stage. The

rotation of the detector is limited by the Auger spectrometer in one direction

and the ion beam in the other direction. This effectively limits the range of

angles that can be scanned to 103°. The origin of the detector is set using limit

switches on the rotation motor, which produces a reproducible home position

for measurements. The ion beam enters the chamber at 135° compared to the

home position.

Detection Efficiency - Zr spectroscopy

An examination of the detection efficiencies of the ground state and

first excited state is necessary before any comparison between the sputtering

51

yields can be accomplished. Figure 21 is a partial schematic of the energy-

levels of Zr showing some of the excitation and decay pathways of interest in

this thesis.

18244
17814

16787

1241

570

-5-

3F

3R

i

5541

5249

4871

tr

f

3D3°
3D2°
SCo
"l

5F.

5F

Figure 21. Energy level diagram of zirconium.

42
Table 4 lists all the major decay pathways, listed by Corliss and Bozmann, of

the two upper states that must be considered in this thesis. The observed

signal is proportional to the number of atoms in the required state, the

fraction of those atoms that are excited, the fraction of the atoms that

52

fluoresce in the detection region, and the fraction of atoms that are detected

by the photomultiplier. In other words, we are interested in calculating the

various quantities in the following equation:

N aN F F F observed atoms excited fluorescence detected (51)

Table 4. Major decay pathways of two upper states of Zr (used in thesis).

Lower

State

Efcm'1)

AE

(cm1) (A)

gAxlO8

(sec1)

transitions from 5F1° at 16787 cm'1

0 16787 5955 .0088

4197 12590 7940 .0026

4376 12411 8055 .0026

4871 11916 8389 .0160

5023 11764 8498 .0056

"ransitions from 3D2° at 17814 cm"1

0 17814 5612 .0013

570 17244 5797 .017

4186 13628 7336 .0083

4376 13438 7440 .0190

4871 12943 7724 .0016

5023 12791 7816 .0021

5249 12565 7957 .0140

53

Fraction of atoms excited by laser

The sputtering experiment is operated above the saturation point in

the power curve. At the saturation point the fraction of atoms that is excited

by the laser is proportional to the ratio of the statistical weight, g = 2J+1, of
3 5

the two states. Thus 60% of the F2 atoms would be excited to the Fj° state

and 71% of the F3 state would be excited to the D2 state.

Fraction of atoms that fluoresce in detection volume

The fraction of atoms that would fluoresce in the detection volume of

our detector is dependent on both the velocity of the atoms and the lifetime of
43

the upper state. Pellin and Wright measured the velocity distributions of the

ground and two lowest excited states of Zirconium and found them to be

indistinguishable. At 1-3 kev, the energy distributions follow Thompson's

equation (see Chapter 1, equation 43) fairly accurately with U= 6.305 eV and

m = 0 corresponding to the hard sphere model. Plotting this equation, the

most probable velocity is 2.6 x 10 cm/sec (Figure 22).

54

Relative Velocity
Distribution

2 4 6 8

Velocity(105 cm /sec)

10

5„ o
Figure 22. Fraction of Fx atoms that will radiatively decay before leaving

the detection volume.

ft 7
Measurements by Whitaker and Li indicate the average distance from

the point where a Zirconium atom is excited by the laser to a point where it

leaves the detection volume is 0.3 cm. The velocity of a Zr atom with energy

e is 1.46x10 Ve cm-s'1 with e measured in eV. The time it takes a Zr atom to

-fi -1/2
transverse the 0.3 cm detection volume is 2x10 e seconds. The fraction of

atoms of an energy e decaying in the detection volume can be calculated from

/, flourescet (e) = l-e
-2»1(T

(52)

5„ o
where x is the lifetime of the upper state. The lifetime of the Zr Fx state is

44
228 ± 10 ns. Figure 22 plots the fraction of atoms decaying in the detection

55

volume as a function of velocity as well as the relative velocity distribution of

these particles. We are interested in the total fraction for all velocities. To get

this number, Thompson's equation is normalized to determine the fraction of

atoms in the energy range e0 to e0 + Ae

_ 2C/e0Ae

[U + eJ

Equation 53 is then multiplied by equation 52 and integrated over all energies

to determine the total fraction of excited atoms that decay in the detection

volume.

((-2*10-«^

l_cl «* J de
V)

f~-=Wl (U + z? (54)

Using U=6.305 eV and x = 228 ns, 82% of the ¥° atoms fluoresce before

leaving the detection volume.

Hannaford and Lowe did not measure the lifetime of the D2 state but

did measure the lifetime of the D3 state as 267± 10 ns.6 Using equation 53,

this would predict 79% of the D3 atoms will fluoresce before leaving the

detection volume. This lifetime was measured using laser induced

fluorescence techniques and is most likely correct. Using the data from the
2

tables of Corliss and Bozman, we would calculate a lifetime of 843 ns, 790 ns,

and 776 ns for the F°, D2°, and D3° states respectively (using x = [^iAi)).

56

The discrepancy is addressed by Hannaford and Lowe and is explained by

the experimental methods used by Corliss and Bozman to construct their

table. Corliss and Bozman's data were based on discharge data to create the

excited states. Many higher states are created simultaneously and these

higher states can decay into the upper state of interest resulting in an

unusually large lifetime. The Corliss and Bozman data must be used with

caution, but can be used to determine the relative lifetimes of the three states

of interest to this thesis. The data clearly shows the lifetime of the D2° state

falling between the F° and the D3° state. Thus between 82% and 79% of the

D2 state will fluoresce in the detection volume. These values are similar

enough that they will be assumed to be equivalent for the work in this thesis.

Fraction of atoms detected by photomultiplier

The fraction of fluorescence emitted in the detection volume that is

passed by the filters (650 nm to 850 nm) in the photomultiplier can be

estimated from the branching ratios of the various states. Using the gA

values from Table 4 we can calculate this fraction using the following

equation.

 Z^° detected /cc\
detected ~ X=i '. W^V

LsKu

o 5 o
Assuming only 50% of the 8498 A decay from the Fx state is detectable, 67%

of the atoms in the Fx state will decay with wavelengths detectable by our

57

system. 71% of the D2 system will decay with detectable wavelengths. To

normalize the data for differences between excitation efficiency and detector

efficiency, the data needs to be divided by the product of fdetect and f it. The

Ft data needs to be divided by 0.40 and the D2 data by 0.50.

UHV Sample Chamber and Surface Characterization

The UHV chamber shown schematically in Figure 17 is made of

stainless steel and is pumped out by a Balzers turbo pump backed by a 4"

Acatel diffusion pump and rotary stage pump. All flanges incorporate the

use of metal seals to insure a base pressure of 5x10" torr. A titanium

sublimation pump is used to preferentially remove 02 from the residual gas

atmosphere measured in the chamber.

The sample specimen is held by a VG 3-way sample manipulator

mounted on the top of the chamber. The sample manipulator provides x, y, z

translation as well as polar and azimuthal rotation of the sample. Once the

sample has been mounted on the sample holder, it is aligned so that the

surface and center of the sample coincide with the center axis of the chamber.

This is accomplished using an alignment cone constructed specifically for this

purpose.

An E beam heater attached to the back of the sample holder is used to

flash heat the sample after long periods of sputtering or sputter cleaning. The

flash heating, up to 800° C, removes absorbed contaminants from the sample

surface. The surface contaminants are monitored using an Auger

spectrophotometer both before and after an experiment. A new sample

58

usually has a large fraction of absorbed C, N, and O on the metal surface

(Figure 23). Because heating alone rarely removes these contaminants,

sputter cleaning is usually necessary. An electron gun is mounted in the
.5

chamber for this purpose. The chamber is back filled with a pressure of 1x10

torr of argon gas and the resulting ion beam rastered across the sample

surface. Figure 24 shows the clean surface that occurs after sputter cleaning

and subsequent annealing.

Figure 23. Auger scan of a dirty surface.

59

Figure 24. Auger Scan of Clean Surface.

Control Computers and Programs - Hardware

The control system for the experiment consists of an IBM PC AT,

CAMAC crate, and Apple 2E computer. The Apple computer controls the

laser system and is slaved to the IBM master computer through a serial

interface. The CAMAC crate holds the amplifier discriminator for photon

detection, the timer scalar for photon counting, and a DACA board to control

the shutter on the ion and laser beam. Several programs have been written

for the IBM PC to optimize the interfacing of the various components.

Programs - Master Menu

The master control program is a Turbo Pascal menu program

(pmesprog.exe) that allows the user to select the type of experiment they

would like to run. The menu consists of 8 selections as follows:

60

1. Auger

2. Mass

3. Freq

4. Angular

5. DAC

6. BASIC

7. DOS

8. initCAMAC

The selections for the most part are self explanatory. Auger allows one to

electronically record or plot Auger data. Mass allowed one to electronically

record or plot Mass Spectrometry data - this selection was disabled when the

mass spectrometer was removed. Freq and Angular allows the user to run

frequency or angular scans. DAC is used to test the D/A converter and to

open and close the ion beam shutter. BASIC puts one in the BASIC language

directory to allow the user to run various characterization programs and DOS

transfers the user to the DOS operating system. The Init CAMAC selection

rezeros all the CAMAC crate components and is always initiated at the start

of a run.

Auger program

The Auger program is written in Pascal and interfaces the Auger

Spectrometer, the Timer Sealer, and the A/D converter to the IBM PC to

produce an electronic copy of the auger scan. The program starts with a sub

61

menu that allows the user to choose between recording an auger spectrum,

plotting a previously recorded auger scan to the screen, or obtaining a listing

of previously recorded spectra saved on the hard disk. The auger scan

program prompts the user for the input data required to run the experiment.

The input data starts with an output file name which the program uses to

save in a DOS directory named c:/sputter/augdat. The convention has been

to name this file beginning with an as and then including the date and run

number. For example as082703.dat would be the third auger scan taken on

august 27. The year is not recorded but can be obtained by examining the

date when the file was generated using any regular DOS file program. The

operating parameters set to run the Auger are then entered including the

lower limit of the voltage scan, usually set at zero; the upper voltage scan

limit, set at -600 volts; the scan speed, set at 3 eV/sec; the voltage scale, set at

100 volts/div; the sample speed, set at the (scan speed) /(# of data points at

each voltage); the number of data points averaged at each scan point; and

finally a comment line to record any pertinent observations. All of these

parameters are set by the user on the Auger control unit. The program then

calculates the number of points in the interval specified by the lower and

upper limits and sets up the arrays to store the data. Once the Auger scan is

started, the program uses the A/D converter to input the x, y voltage data

from the spectrophotometer. The data is written to the screen as well as the

output file at the end of the scan. The auger plot program reads the data

from this output file and replots it to the screen.

62

Mass spectrometer program

The mass spectrometer program operates similarly to the auger

program. When the mass spectrometer was removed from the system, this

program was disabled so shall not be explained in any detail.

Frequency Scan Program

The frequency program is a Pascal menu that allows the user to select

between recording a frequency scan, plotting a previously recorded scan, or

listing previously recorded scans saved to the hard disk. The frequency scan

program is a BASIC program used to record a frequency scan on the sample

keeping the scan angle fixed. The program interfaces the IBM PC to the Apple

2E, the compumotor, the ion beam shutter, the laser shutter, and the

photomultiplier tube. The first input parameter requested is the name of the

output file to store the data which defaults to the c:\sputter\freqdat\

directory. The convention is to start the file with a "fs" followed by the date

of the scan. The next input parameter requested is the integration time. The

integration time is the time at each step of the scan the timer sealer will pause

to collect data. The data written to the output file will be in units of

counts/second so the data will be divided by this integration time if it

exceeds 1 second. The standard time used in this thesis was 5 seconds.

The next input parameters are the number of scans, the detector

position, the starting energy of the laser in cm , the frequency range to scan,

and the increments in megahertz (MHz). Up to 100 scans can be recorded to

disk although the standard number used was 5 scans. These scans are then

63

averaged to give the data presented in this thesis. The detector position is

usually set between 45° and 60° as measured from surface normal of the

sample. Once the user inputs the starting energy, the interval, and the

increment to move the laser, the program calculates the number of steps

necessary and starts the scan. The sample is rotated to the user defined angle,

all shutters closed, and dark background counts collected for 5 sec. The laser

wavemeter is queried for the current laser frequency and changed to the

starting frequency as needed. The data collection proceeds in the following

manner: Photon counts are measured with everything on, the laser on, and

then the ion beam on. These counts along with the difference using the

following formula Nsignal = Nallon - Nlaser -Nion + Ndark are recorded to screen

and file. The laser is then scanned forward in frequency and the next data

points taken. The laser frequency is checked every 10 points against the built

in wavemeter and frequency corrections are made at this time.

Angular Scan program

The angular program is very similar to the frequency program. It is a

Pascal menu program that presents the user with the choices of taking an

angular scan, plotting a previous scan, or displaying a list of previous scans

present on the hard drive. The angular scan program is written in BASIC and

its first input parameter is the standard output file name. Following the

standard convention, the file name starts with "an" followed by the date. The

program then queries the user for the integration time, # of spectra, starting

angle, ending angle, and angle increment. These parameters are used to set

up the number of steps in the scan and the corresponding data arrays.

64

Several characterization data are then entered including the ion sputter angle,

sample metal, sputter ion, photomultiplier voltage, ion beam current, and ion

beam voltage. These data are entered in the lab book and in the heading of

the electronic record for redundancy. The laser frequency in cm"1 is then

entered along with the number of steps to scan before pausing. The program

then starts and runs like the frequency scan program with the difference that

the frequency is now held constant and the detector angle changed for each

point. The laser frequency is also verified at every point and corrected as

necessary and the program will pause after a specified number of steps so

that the sample can be flash heated to remove any absorbed contaminants.

The number of steps is usually set to correspond with one complete scan so

that a fresh surface is prepared for each scan.

DAC Test Program

The DAC program is a Pascal program that allows the user to test the

D/A board and open the ion beam shutter. It is set up to prompt the user for

the DAC channel they want to activate and then allows the user to set the

channel to 0 - 5 volts. This is used commonly to insure that the ion beam

shutter is receiving 5 volts and is open at the start of the day.

BASIC Program

The BASIC section shunts the user to the BASIC directory and allows

the user to directly run any of the various BASIC characterization or

alignment programs. The two most common alignment programs used to

65

align the laser into the fiber optic are ccount.bas and detpos.bas. The

ccount.bas program is a looping program that is used to optimize the laser

intensity into the fiber optic cable. The user sets the iteration time and the

program interfaces the timer sealer and the photomultiplier tube to provide

continuous counting of the photons hitting the photomultiplier. The user

translates the laser into the fiber optic cable and maximizes the signal

displayed on the computer screen. To end the program the user hits the

standard BASIC escape keys of control C. The detpos.bas is a subroutine that

controls the compumotor used to rotate the detector around the sample. The

user specifies the detector position and the program moves the detector to

that position. This is used to verify operation of the compumotor before

running. Any other subprograms used in the other master programs can be

tested here also, making the debugging of the programs easier.

All the programs used to collect data for this thesis are collected in

Appendix A. These programs are useful only with an experimental setup

similar to the Watts lab, but are included so that the latest versions and

changes may be collected in one location.

Procedures

To run an angular scan sputtering experiment, the following

procedure needs to be followed. The Argon Ion laser must be turned on for 2

- 3 hours before the laser reaches optimum stability The electronic control

unit for the Dye laser must also be turned on at this time. The control unit,

which supplies power to the reference leg heater on the Dye laser, takes at

least 30 minutes to stabilize.

66

While the laser system is warming up, the sample surface can be

checked for cleanliness and the ion beam started. The sample is centered in

front on the Auger Spectrometer using the VG sample manipulator. The

center position has been recorded on a 3x5 card that has been taped to the VG

manipulator. The recorded position is used as the standard when taking

Auger scans. The first Auger scan is recorded and examined to determine

surface cleanliness. Zr, C, N, and O peaks are usually observed. If a new

sample is not used, flash heating the sample to 800 °C is usually sufficient to

clean the sample. After a four minute sample cooling period, a second Auger

scan is recorded to verify the presence of a clean surface. The four minute

waiting period is necessary to reduce the number of background infrared

photons that would swamp the photomultiplier signal. If peaks other than

Zr are present, a combination of flash heating and /or sputter cleaning is

necessary to clean the surface.

Once a clean surface is present as determined by Auger, the Auger is

turned off and the sample is positioned to the center of the chamber. The

sample is rotated to determine the angle of incidence of the ion beam

impacting the surface. The ion beam enters the chamber at 135° as measured

from the zero point of the detector. Setting the VG sample manipulator at

269° will produce a 45° incident beam on the sample.

After positioning the sample, the DAC program is run and channel 2

set to 5 volts to open the ion beam shutter. The ion beam is started and the

separation valve between the ion beam chamber and the UHV chamber is

opened. The ion beam current is measured on the sample using an

electrometer and the various ion optics elements adjusted to maximize the

current on the sample. The ion beam is allowed to bombard the sample

surface as the lasers finish warming up. The ion beam needs approximately

67

30 minutes of continuous operation to stabilize so it will not migrate during

an experiment.

Once the lasers and ion beam have achieved stable operation, the laser

is tuned to the frequency of interest. The laser is blocked, ion chamber valve

closed, and ccount BASIC program is run to measure the background counts

in the chamber. These should be between 5-8 counts/sec. The laser is then

unblocked and coupled into the fiber optic cable using two steering mirrors

and two three-way translation stages that hold the fiber optic and a 1 cm focal

length lens. The scattered laser light is monitored in the chamber and the

mirrors and translation stages adjusted to maximize this signal. This occurs

when the maximum light is being transmitted by the fiber optic cable.

The laser is placed in remote operation, the ion chamber valve opened,

and the ion current measured on the sample is maximized. The angular scan

program is then run entering the appropriate parameters for the experiment.

The sample is flashed to 800 °C to clean the surface, cooled for four minutes,

and the scan started. The program pauses at a user defined time and the

sample is again flashed to 800 °C and cooled for four minutes. After

completing all scans, the sample is raised and centered in front of the Auger

and another scan taken. The sample is flashed to 800 °C and cooled for four

minutes and the final auger scan is taken to verify a clean surface.

Chapter 3. Results and Discussion

Laser Power Saturation Determination

The initial set of experiments consisted of characterization

experiments to verify that the experimental apparatus was operating

correctly. The first series of experiments conducted were frequency scans to

determine the optimum laser power needed to saturate a transition. An

Argon ion beam at 45° incidence was used as the sputter source to provide

200 nA of current on the zirconium foil sample. The laser was set to the

ground state frequency of zirconium, 16786.978 cm , and a variable thickness

neutral density filter pack was inserted to modulate the laser power input

into the fiber optic cable. The LIF detector was rotated to 45° and five scans

were measured. These five scans were averaged to give the curves in Figure

25.

69

220mW

180mW

-1060
8)5.920 16786.940 16786.960 16786.980 16787.000 16787.020 16787.040

Frequency (cm-1)

Figure 25. Ar ground state frequency curves

The peak of the scan was located and a five point average made to determine

the maximum signal point. Several experiments were completed varying the

laser power by changing the thickness of the neutral density filter between

experiments. The maximum signal vs. laser power is plotted in Figure 26. It

can be seen that the signal reaches a plateau around 150 mw in power; thus

all experiments were conducted using laser powers in excess of this 150 mw.

70

U

W

o
O

10000

8000

6000

4000

2000

0

0 50 100 150 200 250

power mW

Figure 26. Power saturation curve.

Ar Ground State Sputtering

Several changes were made to the instrumentation since Whitaker and

Li completed their series of experiments on noble gas ions (see Experimental).

Ar ion sputtering experiments were reaccomplished to insure that the results

would correspond to previous measurements. A 1.9 keV ion beam provided

500 nA of current as measured on the sample. 160 mW at 16786.978 cm was

71
3 5 o

used to probe the F2 -» Fx transition. A one second integration time and a

one degree angular resolution was chosen. Five scans were recorded at 15°,

30 ,45 , 60 ,65 , 70 , and 75 as measured from surface normal. These five

scans were averaged and plotted together in Figure 27.

u
m
tli
w
c
3
O
O

14000

Angle

Figure 27. Ar sputtering on Zr (raw data)

o75

x70

o65

A 60

x45

+ 30

ol5

These curves were normalized and compared to normalized Ar data taken

by Whitaker and Li. The shape of the curves was consistent between the two

experiments, indicating that no new experimental artifacts had been

introduced with the changes to the apparatus.

72

Three basic parameters in the data can be evaluated: 1) the sputtering

intensity at various incident ion angles, 2) the peak position of the sputtering

distribution, and 3) the shape of the distribution curve. The latter two

parameters can be further compared to predictions using Roosandaal

Sanders Theory. From the curves in Figure 27, it can be seen that the

sputtering yield using an Ar beam reaches a maximum for a 65° incident ion

beam. This result was obtained using similar input conditions and with all

data recorded in one day, thus eliminating day to day variability in laser

power and incident ion beam conditions.

Normalized Shape vs incident ion angle

Normalization of the sputtering intensity data was necessary before

the data could be used to analyze the peak position of the distribution and the

shape of the yield curve. All the curves in Figure 27 show evidence of a

broad plateau occurring at their maxima. The normalization factor was

determined by finding the center of the plateau in each curve and calculating

a five point average at this point. The data in each curve were then divided

by this normalization factor to form the curves in Figure 28.

73

1.200

Q75

X70

o65

A 60

*45

+ 30

O 15

-0.200

angle from surface normal

Figure 28. Normalized Ar sputtering curves.

Examining the normalized curves in Figure 28, two observations can be

made: 1) all the curves show approximately the same distribution pattern

from the peak position to the ion beam side of the graph (negative angle), and

2) the distribution becomes narrower as the incident ion beam moves from

near normal directions, 15 , to glazing incidences, 75 . In other words, all

curves show the same back sputtering behavior but less forward sputtering as

the incident ion beam moves toward the surface.

Roosandaal Sanders fit to raw data

Following the approach of Whitaker and Li, the curves in Figure 27

were modeled using a nonlinear least squares fit to the modified Roosandaal

74

Sanders equation using B(E), n, and U as fitting parameters. Table 5 lists the
2

fitting parameters and a % term indicating the goodness of the fit to the RS

2
equation. As for most applications, a smaller % term is indicative of a better

fit.

Table 5. Fitting parameters using Roosandaal-Sanders equation.

Angle B(E) n U (X2)/N-m

15 16,595 1.55 9.10 0.6330

30 17,032 1.49 9.42 1.4015

45 18,061 1.52 8.10 2.0116

60 15,954 1.53 5.02 3.2590

65 15,525 1.49 2.94 7.8948

70 13,889 1.47 1.78 5.4242

75 10,374 1.42 0.45 2.6606

The B(E) term is an amplitude correction factor and will not be examined in

detail. The exponent, n, to the cosine term is approximately 1.5 in all fits.

45,46 47 48
This is consistent with the work of other researchers ' ' as well as the data

collected by Whitaker and Li. The fitting parameter, U, decreases

continuously (neglecting the 15 curve) as the incident ion beam moves

toward the surface. The 15 curve is neglected because it is not apparent that

there is enough data to fully determine that the peak has been reached. In

the original Roosandaal Sanders equation, U corresponded to the surface

binding energy, which is usually approximated using the sublimation energy

75

of the target (6.3 eV for zirconium). In this approach, using U as a fitting

parameter clearly removes any relationship to the sublimation energy of the

target.
2

The % term in Table 5 indicates that the modified RS equation is

inadequate at fitting the raw data as the incident ion moves toward the

surface. Curves comparing the raw data to the modified Roosandaal Sanders

equation are presented in Figure 29-35, along with a compilation of the RS

curves in Figure 36.

£ 4000 -
c
o 3000 --
o

•RS15

obs

20 40 60 80

sputter angle from surface normal

100

Figure 29. Roosandaal Sanders fit, 1.9 kev Ar at 15 angle of incidence.

76

o a
(A

c
3
o u

 RS30

□ obs

20 40 60 80

sputter angle from surface normal

100

Figure 30. Roosandaal Sanders fit, 1.9 kev Ar at 30° angle of incidence.

ü
a>

•S2 a>
c
3
O u

 RS45

D obs

0 20 40 60 80

sputter angle from surface normal

100

Figure 31. Roosandaal Sanders fit, 1.9 kev Ar at 45° angle of incidence.

77

ü o
U)

c
3
o
ü

 RS60

□ obs

(20) 0 20 40 60

sputter angle from surface normal

80

Figure 32. Roosandaal Sanders fit, 1.9 kev Ar at 60° angle of incidence.

ü
a> v>

3
O u

ituuu -

®*y~ 10000 H

8000 -

6000-

4000 -

2000-

I 1 0- 1 1 1 1

 RS65

n obs

(40) (20) 0 20 40 60

sputter angle from surface normal

80

Figure 33. Roosandaal Sanders fit 1.9 kev Ar at 65° angle of incidence.

78

ü
0)
Cfl

3
O
U

(40)

 RS70

D obs

(20) 0 20 40 60

sputter angle from surface normal

Figure 34. Roosandaal Sanders fit 1.9 kev Ar at 70° angle of incidence.

12000

u

C
3
O o

 RS75

□ obs

(20) 0 20 40

sputter angle from surface normal

Figure 35. Roosandaal Sanders fit 1.9 kev Ar at 75° angle of incidence.

79

14000

 RS15

 RS30

 RS45

—— RS60

- RS65

X RS70

+ RS75

(20) 0 20 40 60

sputter angle from surface normal

100

Figure 36. Roosandaal Sanders fits, 15 - 75° compilation.

Examining the curves in Figure 29-35, it is apparent that the modified

Roosandaal-Sanders equation does not fit the data as the incident ion beam

moves toward the surface. The modified Roosandaal Sanders equation was

reexamined to determine the cause of the discrepancy in the fits.

80

Roosandaal Sanders Discrepancies - Peak Position

The first parameter investigated was the peak position of the

distributions, which was determined: 1) by the center of the plateau

indicated using the normalization procedure to produce the curves in Figure

28, and 2) by fitting the raw data in Figure 27 to the modified Roosandaal

Sanders Equation. The results of this analysis are collected in Table 6.

Table 6. Peak position of Zr sputtered by Ar\

Angle Peak Position

Normal RS

15 27 21

30 28 24

45 27 21

60 26 16

65 24 12

70 21 9

75 18 5

The data in Table 6 reveal that both procedures show a trend in the

peak position of the distribution moving toward surface normal as the

incident ion beam moves away from surface normal. The raw experimental

data reveal a much slower regression to surface normal of the peak position

than the RS data indicate; thus^ it is not evident that as the ion beam moves

toward the surface that the peak position will ever migrate toward surface

81

normal as drastically as indicated by the RS data. The behavior indicated by

the RS fits is clearly not supported by the experimental data.

Roosandaal Sanders variation of U and incident ion angle

The input parameters to the modified Roosandaal Sanders equation

were varied and plotted to determine what affect varying U and/or the

incident ion beam angle would have on the peak position of the distribution.

Using B(E) = 10,000, n = 1.5, incident ion beam = 30 , and varying U from 10

to .1 produces the curves in Figure 37. Keeping U constant and varying the

incident ion beam angle produces the curves in Figure 38.

10000.00 -

9000rOÖ^

sooojxr-
/Z0ÖO.OO-

//60oaoj>
// SKrfXOO-

// X^OOOye«^
^//^^OO.OO -

Jj£y*^ 2000.00 -
JfP^ 1000.00 -

^— 1 &eo- 1 -^—I

-100 -50 0 50

angle from surface normal

100

Figure 37. Roosandaal Sanders curves, varying U.

82

10000.00
9000.00
8000.00,
7000

(100) (50) 0 50

angle from surface normal

100

Figure 38. Roosandaal Sanders curves, varying incident ion angle.

Figure 37 provides visual confirmation that variation of the fitting parameter

U causes a drastic shift in the peak position of the sputtering distribution.

This shift is less dramatic in Figure 38, but varying the incidence angle also

causes a slight shift in the peak position. The peak position versus the

various fitting parameters is collected in Table 7.

Table 7. Peak position versus U and incident ion angle.

Parameter 10U 5U 1U .1U 30° 45° 60° 75°

Peak Position 25 15 5 1 25 24 22 20

The data in Table 7 indicate that the large shift toward surface normal

produced by the Roosandaal Sanders fit is an artifact of the Roosandaal

Sanders equation. The large variation in the input parameter U causes an

83

artificially large shift in the peak distribution. Clearly, variation of U through

two orders of magnitude is unrealistic and results in behavior not evident in

experiments.

Roosandaal Sanders fits to forward sputtering

The raw data was reexamined to determine if another fitting routine

could provide reasonable fits using physically meaningful parameters.

Returning to the observations of the normalized curves in Figure 28, the data

suggest two different sputtering behaviors. The back sputtering behavior

appears to be independent of incidence angle whereas the forward sputtering

shows a slight dependence on incident angle. There is no reason that the

same sputtering mechanism is responsible for both behaviors, thus the

modified Roosandaal Sanders equation was used to fit each part of the curve

independently to see what trends would become evident. The peak position

was chosen by the normalization procedure, then both back-sputtered and

forward sputtered portions of the curve were fit using the modified

Roosandaal Sanders equation. The parameters B(E), n, and U were allowed

to vary independently in each portion of the curve. The fitting parameters
2

and the x term are collected in Table 8. The curves produced using these

parameters are plotted in Figure 39-45.

84

Table 8. Roosandaal Sanders fits to back and forward sputtering.

Angle Forward Backward 2
X

B(E) n U B(E) n U

15 19,239 1.67 12.22 0.8685

30 18,257 1.56 11.79 12,886 0.68 4.11 0.9158

45 19,492 1.64 13.29 14,855 0.67 3.57 1.0090

60 17,494 1.80 13.95 14,452 0.57 2.61 0.7458

65 17,199 1.97 17.49 14,539 0.54 2.44 0.8768

70 14,941 2.07 18.77 13,280 0.60 1.89 0.6224

75 11,285 2.31 19.18 10,376 0.42 2.33 0.1981

Ü

SB

c
3
o o

20 40 60 80

angle from surface normal

100

 RS30

D Obs

Figure 39. Modified RS fit, Ar+ at 30° angle of incidence.

85

u
0)

40
(A
*■< c
3
O
Ü

 RS45

a obs

20 40 60 80

angle from surface normal

100

Figure 40. Modified RS fit, Ar+ at 45° angle of incidence.

14000

u

5
o
Ü

(20) 0 20 40 60

angle from surface normal

■RS60

obs

80

Figure 41. Modified RS fit, Ar+ at 60° angle of incidence.

86

o u

c
3
o
ü

14000 -

ö*™"^ 10000 -

8000-

6000-

4000 -

2000 -

I 1 0- 1 1 1 1

 RS65

□ obs

(40) (20) 0 20 40 60

angle from surface normal

80

Figure 42. Modified RS fit, Ar at 65° angle of incidence.

14000

o
O

c
3
o o

 RS70

□ obs

(20) 0 20 40

angle from surface normal

80

Figure 43. Modified RS fit, Ar at 70° angle of incidence.

87

ü
0)
(A

C
3
O
ü

12000 -

1°°J&§
^-#0^^0000 -

a 6000 -

4000 -

2000 -

I 1 0- 1 1 1

(40) (20) 0 20 40

angle from surface normal

60

 RS75

□ obs

Figure 44. Modified RS fit, Ar at 75° angle of incidence.

14000

i jiS"1
c
3
o
ü

(20) 0 20 40 60

angle from surface normal

100

 RS15

 RS30

 RS45

—-RS60

. RS65

X RS70

+ RS75

Figure 45. Modified RS Compilation, 15 - 75c

88
2

The relatively small % terms in Table 8 and the curves in Figure 39-45 attest

to the success of this fitting procedure. Whether the fitting parameters are

physically meaningful will be addressed in the paragraphs below.

Analyzing the forward and backward sputtering independently shows

some interesting trends. In the forward sputtering case, the parameter U

increases steadily as the incident ion moves from near surface normal toward

the surface. U varies from approximately 2 to 3 times the sublimation energy
49

of zirconium. Garrison et. al. addressed the question of how much energy

would be required to remove an atom from a surface. Jackson ' found that

the energy loss using a pairwise additive potential approximation is 30% to

40% larger than the heat of sublimation. Using Jackson's results and
52

experimental evidence, Garrison et. al. argue that the energy requirement is

much greater than the heat of sublimation. They use a model of a diatomic

molecule with bond strength, De. The binding energy of each atom is then

De/2, and if one atom of this molecule is clamped tightly, twice the binding

energy is required to remove the other atom. This model breaks down upon

closer examination as zero energy would then be required to remove the

second atom. Regardless, Garrison et. al. argue that U should fall between one

and two times the binding energy.

Whitaker fit Ar data at 30 ,45 , and 60 to the modified Roosandaal

Sanders equation and reported a corresponding 300% change in the value of

U, similar to our results in Table 5. This large variation could not be

explained using Garrison's model. Whitaker explains the discrepancy by

invoking expansion of the lattice spacing of the top layer of surface atoms.

He argues that the atoms near the surface are set into motion by the

89

collisional cascade and that the average lattice spacing can change

significantly before an atom escapes the attractive forces of the surface.

Therefore, the average lattice spacing at the time of ejection will be dependent

on the bombardment conditions. A larger lattice spacing will decrease the

interaction between an atom leaving the surface at a large angle to surface

normal and its nearest neighbor, increasing the probability of ejection in these

high angle directions. This behavior is essentially the same seen by

increasing the surface binding energy, U. Additionally, a larger lattice

spacing increases the probability of deeper atoms being sputtered. In
7

computer simulations, the sputtering distributions of second and third layer

atoms has been shown to be highly over cosine due the increased number of

collisions at high angles of incidence.

Whitaker's model is consistent with the forward sputtering behavior

observed in the Ar data from 30 to 75 . As the incident ion angle moves

toward the surface, the interaction with the surface increases. This causes a

steady increase in the lattice spacing of the top layer, simulating an increase

in the surface binding energy. This increase in the lattice spacing also

increases the contribution of second and third layer atoms that can be

sputtered. As this contribution increases, the over cosine behavior should

increase. This is supported by the increase in the exponent n in Table 8.

Roosandaal Sanders fitting to backward sputtering

The backward sputtering behavior cannot be explained using the same

model used to describe forward sputtering behavior. The value of U

decreases as the incident ion moves toward the surface and the value of n is

90

definitely less than 1, showing evidence of undercosine behavior. There are

two possible mechanisms for the back sputtered behavior. If the incident ion

penetrates deeply into the target, the momentum distribution should be

completely randomized and the collision cascades produced should form an

isotropic cosine distribution peaking at surface normal. This is clearly not the

behavior seen in our experiments.

The second possible mechanism is caused by back scattering of the

incident ion by the target atoms. In this scenario, the incident ion heads

toward the surface, initiating collision cascades on its way to exiting the

surface. The ion will preferentially exit in the surface normal position similar

to the behavior of the forward sputtered target atoms. As the ion exits, it can

interact with other target atoms, consequently ejecting them at high angles of

incidence. This phenomenon would produce a sputtering distribution that

would be distinctly undercosine in behavior. This is exactly the behavior

observed in our experiments. The data in Table 8 show undercosine behavior

in fits at all of the angles. The trend showing a decrease in the parameter U as

the incident angle increases can also be explained with this model. As the

incident angle increases, the depth of penetration into the target decreases.

The back scattered ion would then have a smaller distance to travel before

exiting the surface, that is, its interaction time with the surface layers would

be less. Thus, as the interaction with the surface decreases, the parameter U,

which is the only parameter incorporating surface effects, also decreases.

91

Variation in n and U allowed by fitting routine

The values of n and U should not be considered absolutes. The

parameters reported in Table 8 are for the best fit conditions, but several

combinations would give reasonable fits to the data as evidenced Figure 46.

180 - r6

160 -
- 5

140 -

120 - - 4

i s
qu

ar
ed

oo

 o

o

 o

•3 3

— chi

-U
Ü

60- 2

40 -
- 1

20 -

n _ r\

0.3 0.5 0.7 0.9

n

Figure 46. Chi vs. n for 70 Ar on Zr.

Choosing an arbitrary value of 50 for a maximum chi squared value allows a

variety of n's. Since the n and U parameters are linked, they cannot be

examined independently. They can vary between 0.52 <n< 0.70,1.38 <U<

2.22 and still give reasonable fits to the modified RS equation. The n

parameter consistently shows under cosine behavior at all angles and the U

parameter shows a decreasing range as the ion incident angle increases, so

92

the variability in the n and U parameters does not affect the conclusions

drawn from the fitting routine.

The above fitting procedure of treating independently the forward and
+ +

backward sputtering was applied to Ne and Xe ground and first excited

state data available from Whitaker. The results are presented in Table 9. The

Ne ground state results are consistent with the Ar data described above.

The first excited state results indicate a much sharper peaking (i.e., larger

value of n) than seen in the ground state Ne results. This sharper peaking

occurs in both the forward and backward sputtering cases, and can be

explained by the relaxation of the excited state species upon interaction with

the surface along angles close to the surface. This interaction would reduce

the near surface population of sputtered excited state atoms, resulting in a

more pronounced peaking toward surface normal in the data. The values of

U also are larger in the first excited state case than in the ground state case.

As we have postulated U to be a surface interaction term, the larger values of

U are consistent with the picture of an increased interaction with the surface.

However, the larger values of n and U could be an artifact of the fitting

routine because their is no mechanism in the RS model for the removal of

sputtered atoms from the distribution due to the relaxation of the excited

state species by the surface. The smaller yield of excited state species along

trajectories close to the surface is compensated(wrongly) in the model as an

increase in the n and U parameters.

Table 9. Modified RS fit to Ne+ and Xe+.

93

Ne,gnd

Angle B(E)

Forward

n U B(E)

Backward

n U 2
X

30 1042 1.76 6.23 0.296

45 816 1.57 10.39 749 -0.20 2.24 0.192

60 1212 2.05 15.32 938 0.80 1.61 0.227

75 890 2.21 16.77 821 0.21 4.86 0.134

Ne,lx Forward Backward

30 1169 1.94 7.63 0.369

45 868 1.94 23.62 860 1.36 4.71 0.209

60 1675 2.52 25.37 1287 0.99 4.23 0.312

75 1119 2.97 45.97 1040 0.91 3.98 0.486

Xe, gnd Forward Backward

30 3376 1.76 16.57 0.470

45 2620 1.82 49.58 2254 -1.36 11.81 0.533

60 4900 2.01 31.81 4112 0.27 15.50 0.202

75 1876 1.69 15.27 1912 -1.68 29.18 0.268

Xe,lx Forward Backward

30 2771 1.97 21.16 0.266

45 1919 2.09 119.29 1773 -0.16 26.73 0.358

60 3590 2.74 76.79 2520 0.24 23.31 0.277

75 1977 1.89 5.24 1708 -1.30 37.27 0.347

94

The Xe ground state behavior shows a much sharper peaking and

much larger U terms than in either the Ar or Ne data. This result can be

explained by the larger mass and size of the Xe ions, that is, by the fact that

they will not penetrate as far into the target. Thus, there will be a greater

interaction with the surface, which is represented by the increase in the U

terms. The larger values of U are representative of a larger lattice spacing, so

the n terms should also increase as the sputtered atoms preferentially eject in

the surface normal direction. The forward sputtering behavior is consistent

with this picture. The back sputtered behavior shows extreme undercosine

behavior. The back scattered incident ion will be very near the surface due to

the limited penetration of the ion. The top lattice spacing will have expanded

considerably due to the ion surface interaction as the ion penetrated the

target. On its exit, the ion will have a much more open lattice to penetrate

and will exit preferentially in the normal direction. The predominant

collisions with surface Zr atoms will occur at glancing angles with the Zr

atoms ejecting close to the surface. This behavior will produce the severe

undercosine behavior evident in the data. The excited state data show the

same increase in the peaking of the distribution toward surface normal as in

the Ne data. The relaxation of the near surface excited state atoms by

interaction with the surface is consistent with these data. The larger U terms

are consistent with the increased size/mass of the incident ion resulting in

greater surface-ion interaction.

Chapter 4. Nitrogen Sputtering on Zirconium

Nitrogen absorbates on Zirconium

When using noble gas ion sources, the sputtering intensity does not

modulate over time as long as a clean surface is maintained. The noble gas

ions do not appear to stick to the surface and /or modulate the sputtering

signal measured. Over many hours of experiments, the signal intensity does

decrease, but this behavior is attributed to the contamination of the surface by

02, C02, and N2 from the residual gas atmosphere of the sputtering chamber.

These observations are verified by Auger experiments indicating an increase

in the C, O, and N peaks after long hours of experimentation. As noted

earlier, this effect was minimized by periodically flash heating the sample to

800° C to eliminate the surface contaminants.

Using nitrogen as the sputter source caused some concern about signal

degradation due to adsorbed nitrogen on the surface. This issue was

addressed by conducting coverage experiments on zirconium. Nitrogen

sputtering on zirconium was accomplished holding the sputtering angle

constant and measuring the sputtered zirconium intensity at a fixed angle

over a long period of time. A graph of the results obtained is shown in Figure

47.

96

4500
4000
3500

g 3000
•§ 2500
c 2000
O 1500

1000
500

0

**W*..

10

l ^

20 30

minutes

40 50

o .
Figure 47. N2 sputtering on Zirconium at 60 incidence

The sputtered intensity holds relatively constant for approximately 20

minutes and then steadily decreases. Thus all scans were timed and any that

exceeded 20 minutes in duration were eliminated from analysis. The sample

was flash heated between scans and scans taken in both forward and

backward directions to further minimize any effect absorbed species could

have on the sputtering distribution.

N2 ground state sputtering on Zirconium

Ground state scans were accomplished at 30 ,45 ,60 , and 75 using a

2 degree resolution to insure all scans were completed in under 20 minutes.

A minimum of 15 scans were recorded and averaged at each angle. These

scans were recorded over several days. The laser input power and ion current

measured on the sample were recorded to insure similar sputter conditions

97

were maintained. The raw data are plotted in Figure 48. The sputtering

intensity reaches a maximum for a 60° degree incident ion beam. The curves

in Figure 48 were normalized by finding the middle of each plateau and

calculating a 3 pt (5 deg) average at this point to use as a normalization factor.

The plateau widths and peak positions are present in Table 10 and the

normalized curves are presented in Figure 49.

ü
<a
10

c
3
o u

4,500

4,000

3,500

3,000.-

A2.5O0

V4

2,000

•*«*?5?l 0 --

1,000 --

500 -

-9-

«CO oo o °o

"=b

VdoA \
»111%

tf=;

i>o

A

<m m A o

3
cyj o

OCH

(40) (20) 0 20 40 60 80

sputter angle measured from surface normal

a 30

o45

A 60

• 75

100

Figure 48. N2 ground state sputtering on Zr (raw data).

98

Table 10. Plateau width and peak position for N, on Zr.

Angle 30 45 60 75

Plateau Width 20 32 10 12

Peak 15 24 30 24

2
o

■o

(0
E
o c

1.2 -

%

1 ■

/". A** 0.6-

•

•« A^o
• A eft»
• A Dra>

0.4 -

0.2 -

»♦A
l 1 9- 1 H 1 1 1

a 30

0 45

A 60

• 75

(40) (20) 0 20 40 60 80

sputter angle measured from surface normal

100

Figure 49. Normalized N2 sputtering curves.

99

Examining the data in Table 10 and Figure 49, several observations can be

made. The peak plateau is broadest at incident angles nearest surface normal,

then narrows significantly as the incident angle moves toward the surface.

The peak position moves away from surface normal as the incident angle

increases to 60 and then returns at 75°. Additionally, a slight narrowing of

the overall shape of the distribution is observed as the incident angle moves

toward the surface.

The peaks in Figure 48 were fit using the modified Roosandaal Sanders •

equation using the same method as for Ar . The curves are shown in Figure

50-53 and the fitting parameters are collected in Table 11.

■RS30

G obs

20 40 60 80

angle from surface normal

100

Figure 50. N2 sputtering on Zr at 30 incident.

100

c
3
O u

3500-

3000 -

y
o «b?

2000- «

1500 -
Ä

1000 -

500 - \-
I 9- 1— —h- —I— 1 ~—I

(20)

 RS45

O obs

20 40 60

angle from surface normal

80 100

Figure 51. N2 sputtering on Zr at 45 incident.

o
0)

c
3
o
Ü

4500 i

4000 - Ay
£

3500 -

Afc^O-
*\

2000 - A\
A\

1500- AX

1000-

500-

I 1 0- 1 \— 1 1

(40) (20) 0 20 40 60

sputter angle from surface normal

 RS60

A obs

80

Figure 52. N2 sputtering on Zr at 60 incident.

u
a>
jo

3
O u

RS fit 2kev N2+ at 75 gnd

2500 -

&#

2000-

^° 9500 -
■d&o

1000 - ^p

500 -

1 h- e- 1 1— 1

(40) (20) 0 20 40

angle from surface normal

60

 RS75

o obs

101

Figure 53. N2 sputtering on Zr at 75° incident.

Table 11. Roosandaal Sanders best fit parameters for N2

Angle

B(E)

forward

n U B(E)

Backward

n U Chi

30 3325 1.17 3.47 1.21

45 4566 1.31 9.02 3603 0.21 2.58 1.16

60 5359 1.92 32.04 4142 0.36 7.06 1.44

75 2524 3.21 76.88 2103 0.36 3.71 1.99

Examining the data in Figure 50-53 and the data in Table 11, similar patterns

to the Ne and Ar data emerge. The forward sputtering behavior shows an

increasing interaction (larger U) with the surface as well as a sharper peaking

102

(increasing n) as the incident ion moves toward the surface. The back

sputtering behavior shows consistent undercosine behavior and smaller

surface interaction terms. The chi terms are larger than the Ar+ data due to

greater scatter in the data. The increased scatter in the data is caused by the

lower sputtering intensity due to the smaller mass of N2
+. The U terms for

N2 are generally larger in magnitude than for Ne at comparable angles.

This may result from the N2 ion splitting into two N ions upon impact with

the surface. The two N ions distribute the energy to the target more

efficiently than a single Ne atom causing a corresponding larger value of U.

The data in Figure 49 show a narrowing of the sputtering distribution

of the 60 incident angle. This behavior is also evident in the increase in the n

term in the back sputtering fit to the modified Roosandaal Sanders curves. A

second series of experiments were conducted at 55 ,60 , and 65 to determine

if this was a reproducible phenomena. The data were collected under similar

conditions as the data in Figure 49 except using an ion current of 200 nA as

measured on the sample as opposed to the 380 nA used previously. The raw

data are plotted in Figure 54. The normalized data using our standard

procedure is plotted in Figure 55 along with the normalized data from the

first series of runs at 45 and 60 .

103

u
10

3
o
Ü

2500

qfS)00A

1000

500 -

-0-

'W*
AAD

oö^o

-40 -20 0 20 40

sputter angle form surface normal

60

0 55

O60

A 65

CO

80

Figure 54. N2 sputtering on Zr (raw data).

2
.0)

XI
t)
N

"5
E
im
o
c

(40)

1.2

AgAöö.A 0.6

0.4

0.2

(20)

D45

0 55

A 60-1

O60-2

X65

0 20 40 60

sputter angle from surface normal

100

Figure 55. N2 sputtering on Zr (normalized data).

104

As can be seen in Figure 55, there is a less dramatic, but still noticeable

narrowing of the 60 curve obtained from the second series of scans. The

narrowing of the 60° peak is within the resolution of the scans and is

reproducible in all the scans. At this time, we cannot suggest a consistent

mechanism to explain this preferential narrowing of the back sputtered

behavior of the 60 sputtering peak. The best fit parameters to the modified

Roosandaal Sanders equation are shown in Table 12.

Table 12. Roosandaal Sanders fits to curves in Figure 54.

Angle

B(E)

forward

n U B(E)

Backward

n U Chi

55 2981 1.69 16.19 2510 0.83 2.01 1.39

60 2504 1.57 22.11 2235 0.92 6.05 0.72

65 2626 1.89 19.88 2230 0.93 2.50 0.53

The trends in the values of U and n for the second series of scans are

consistent with those seen for the first series of scans. The backward

sputtering is more peaked than seen in the earlier data. The data in Table 12

must not be taken as absolute but indicative of trends. At all three angles,

reasonable fits to the backward sputtering could be obtained with 0.7<n<1.2,

1.5<U<7.0.

,0 ,_0 _„0
First excited state scans of N2 were also accomplished at 30 ,45 ,60 ,

and 75 using a 2 degree resolution to insure all scans were completed in

105

under 20 minutes. A minimum of 15 scans were recorded and averaged at

each angle. These scans were recorded over several days. The laser input

power and ion current measured on the sample were recorded to insure

similar sputter conditions were maintained. The raw data are plotted in

Figure 56. The sputtering intensity reaches a maximum for a 60 degree

incident ion beam. The curves in Figure 56 were normalized by finding the

middle of each plateau and calculating a 3 pt (5 deg) average at this point to

use as a normalization factor. The plateau widths and peak positions are

presented in Table 13 and the normalized curves are presented in Figure 57.

4,000

3,500

u

o u

3,00jf

1,500

1,000

500

(40) (20)
(500)

a 30

o45

A 60

• 75

100

sputter angle from surface normal

Figure 56. N2 lx sputtering on Zr.

106

Table 13. Peak width and Position for N2 lx on Zr.

Angle 30 45 60 75

Plateau Width 20 30 22 22

Peak 17 21 20 21

2
o

■>.

■o v
N

"5
E
km
o c

Q30

o45

A 60

• 75

80% D 100

sputter angle from surface normal

Figure 57. N2 lx normalized yield.

The data in Figure 56 and Figure 57 show similar behavior to the

ground state data on N2 . The peak widths are broader at the higher incident

angles than in the ground state and the peak position stays relatively

constant. The peaks in Figure 56 were fit with the modified RS equation and

107

are presented in Figure 58-61. The fitting parameters are collected in Table

14.

-500

■RS30

□ obs

100

angle from surface normal

Figure 58. N2
+ lx modified RS fit at 30° incidence.

3500

3000

Ü
0)

■s
c

2000

1500

o
Ü

1000

-500 20 40 60 80

angle from surface normal

•RS45

D obs

100

Figure 59. N, lx modified RS fit at 45° incidence.

108

ü
0)

JA

C
3
O
ü

4000- lD.n
3500 -

30^fe

jflKoo-

jf&n
^K3

\F
*" 2000 -

1500-

1000 -

500 -

i 1 e- —I 1 1 1

(40) (20) 0 20 40

angle from surface normal

 RS60

□ obs

60 80

Figure 60. N,+ lx modified RS fit at 60° incidence.

ü u
■s
c
3
o o

 RS75

D obs

0 20

angle from surface normal

Figure 61. N, lx modified RS fit at 75° incidence.

109

Table 14. Modified RS best fit parameters for N, lx.

Angle

B(E)

Forward

n U B(E)

Backward

n U Chi

30 2934 1.45 2.62 0.82

45 4673 1.54 9.97 4335 2.26 6.22 0.89

60 5059 2.02 13.23 4596 0.88 8.76 1.06

75 2819 3.61 88.14 2281 1.18 0.21 1.34

The data in Table 13 and Table 14 support the mechanism of

preferential sputtering in the normal direction due to quenching of the near

surface excited state atoms by interactions with the surface. The back

sputtering behavior at 45 shows a much larger n term than expected. This

term is calculated with the fewest data points for the backward sputtering

cases and thus can have large errors. The terms for the 60 and 75 angles use

significantly more data and are considered more representative of the

behavior occurring. Two nearly distinct curves can be seen in the 75 fit. The

N2 molecule breaks in two upon impacting the surface and each resulting N

atom carries a portion of the incident ion energy. These atoms cannot

transfer this energy to the surface atoms as efficiently due to their low mass.

Thus the majority of sputtered atoms will exit with lower energy than in the

case of Ne, Ar, or Xe. The sputtered atoms traveling close to the surface will

have more time to interact with the surface and be quenched. This

phenomenon could cause the unexpectedly pronounced peaking of the

distribution.

110

N sputtering on Zirconium

Ground state scans using N+ were accomplished at 30°, 45°, 60°, and

75 using a 2 degree resolution to insure all scans were completed in under 20

minutes. A minimum of 30 scans were recorded and averaged at each angle.

These scans were recorded over several days and the laser input power and

ion current measured on the sample were recorded to insure similar sputter

conditions were maintained. The results are plotted in Figure 62. As for N2
+,

the sputtering intensity reaches a maximum for a 60° degree incident ion

beam. The curves in Figure 62 were normalized by finding the middle of

each plateau and calculating a 3 pt (5 deg) average at this point to use as a

normalization factor. The peak positions are present in Table 15 and the

normalized curves are presented in Figure 63.

Figure 62. N ground state sputtering of Zr (raw data).

Ill

1.2

"••

2
o
'>.
■o
0)

_N

flj
£
o c

A±A~3 i^Ä
0.6

0.4 -

0.2

-e-

o Oo,

«. r.
• «▲ ELD

W D

• Wig0

-+-
(40) (20) 0 20 40 60

sputter angle form surface normal

80

D30

0 45

A 60

• 75

100

Figure 63. N normalized yield.

Table 15. Peak positions of N

Angle 30 45 60 75

Peak 24 26 13 -6

The data in Figure 63 show a narrowing in the forward sputtering yield as the

incident ion moves toward the surface. A broad plateau is also evident on the

75 incident ion where the back sputtering behavior appears to reach a

constant. The 75 curve has the greatest interaction with the surface and the

greatest scatter in the data in our experiments. The curves in Figure 62 were

fit using the modified Roosandaal Sanders equation. The results are

presented in Figure 64 - 67 and Table 16.

112

ÖUU -

700-

600-

D

a

R]
D aa

u
o

■S2
(A +^
C
3 o u

500-

400 -

D
at?
a

v a

a\
300- p[1D

200 -

100-

0- •< —i— —i— 1 1

20 40 60 80

sputter angle from surface normal

 RS30

a obs

100

Figure 64. Modified RS fit to N on Zr at 30° incidence.

600

u
O)
(A

c
3
o
Ü

(20) 0 20 40 60 80

sputter angle from surface normal

100

■RS45

a obs

Figure 65. Modified RS fit to N on Zr at 45° incidence.

113

ü
0)
-2
10

o o

I 1 0-

(40) (20) 0 20 40 60 80

sputter angle from surface normal

 RS-60

□ obs

Figure 66. Modified RS fit to N on Zr at 60° incidence.

600

o u
in

c
3 o u

n na>°n°?a
% 400 -

D O

300 --

200

100-

(40) (20) 0 20 40

sputter angle from surface normal

•RS75

n obs

Figure 67. Modified RS fit to N+ on Zr at 75° incidence.

114

Table 16. Modified RS best fit parameters to N+.

Angle

B(E)

forward

n U B(E)

Backward

n U Chi

30 739 1.12 1.88 0.66

45 595 1.27 2.26 512 .1 .439 1.22

60 937 1.76 3.23 834 2.43 0.950 1.28

75 579 1.94 3.40 463 -0.023 .001 1.70

The forward scattering behavior trend is similar to the forward

sputtering behavior of the other incident ions we have studied. The

progression in n as the incident ion moves toward the surface is consistent.

The progression in U is also consistent although it is very small. N+ is a very-

small ion and is only 15% of the mass of zirconium. The N ion can penetrate

deeper into the solid before impacting with the target atoms and as such the

surface interaction term should be smaller.

The backward sputtering behavior has the most scatter and is hard to

make any determinations. There seems to be the same undercosine behavior

seen with other species and the surface interaction term is extremely small. A

possible mechanism for this behavior is that the back scattered incident ion is

small enough to exit the lattice without interacting substantially with the

target, that is, without producing any more collisions. As the incident ion

moves toward the surface, the back scattered ion's trajectory also moves

toward the surface. The back scattered ion travels subsurface parallel to the

surface initiating sputtering from the second and third layers. These atoms

115

will preferentially eject in the surface normal direction and cause the extreme

flattening of the curve at 75 .

Chapter 5. Summary and conclusions

An ion optics system utilizing a wein filter velocity selector has been

modeled and characterized for use as a ion source for an instrument to

measure high resolution angular distributions of sputtered neutral atoms.

The ion source provides the capability to use mixed species as sputter sources

and still obtain a well resolved single component ion beam for sputtering.

The ion system was tested using N2 and sputtering behavior of diatomic N2

as well as monatomic N has been measured. The capability to explore

sputtering behavior using ions other than noble gas ions is now available.

Extensive modifications to the instrument were made including

increasing the sample size, modeling and optimizing the ion source

conditions and ion flux on the sample, rewriting the control programs to

incorporate annealing cycles, and changing the sample annealing conditions.

Ar data was reaccomplished to verify consistency with previous data taken

in the Watts' lab. No new experimental artifacts or discrepancies were

apparent.

A modified Roosandaal Sanders model was used to analyze the

sputter data. The model breaks down when high angle of incidence ion

beams are used, reproducing neither the peak nor shape of the sputtering

distribution seen in experiment. Using the surface binding energy U and the

cosine exponent n as fitting parameters removes any relation to physical

reality.

117

Using n and U as fitting parameters, extensive analysis using the

modified Roosandaal Sanders equation was accomplished on N2 , Ar , Ne ,

and Xe . Assuming the back sputtered and forward sputtered atoms occur

from the top layers of the target and assuming the back sputtered and

forward sputtered atoms are caused by different mechanisms; the back and

forward sputtering atoms were fit independently using the peak position in

the distribution as an arbitrary dividing point. Following this procedure and

allowing n and U to vary independently in both fits reveals some interesting

trends. Treating U as a measure of the surface interaction energy, U increases

as the incident ion angle increases or the mass increases for forward

sputtering. The value of n remains between 1 and 3, consistent with the work

of other researchers. The value of n also increases for the forward sputtering

case as the incident ion angle moves toward the surface. The surface binding

energy can be related to the average lattice spacing. If the top layer lattice

spacing increases, the number of atoms preferentially sputtered in the surface

normal direction increases. Thus, the increase in both n and U are consistent

with the picture of an expanding surface lattice.

Figure 68 and Figure 69 are plots of U and n versus the ion beam

incidence angle for the forward sputtering case using the gases examined in

this thesis. The general trend, of increasing values of U and n as the ion beam

angle of incidence increases, is evident for all gases except Xe . Xe peaks in

U and n at 45 . This can be explained by decreasing penetration of the ion as

the angle of incidence increases. The Xe ion is being scattered from the top

layers of the target. The N2 ion shows much larger increases in both U and n

at the 75 angle. If the N2 ion breaks up into two N ions in the region of the

118

surface, twice the energy can be localized in those top layers. This would

explain the larger values that are seen. The small values of U and n seen at all

angles for the N ion can be attributed to the small mass/size of the ion. The

ion penetrates deeply into the solid and is not efficient in transferring its

energy to the target atoms. This causes a corresponding small sputter yield

as well as small values of U and n.

80

70

60

50

D 40

30

20

10»

0

2
ft

x

30 40 50 60

angle of incidence

70

□ Ar

♦ Ne

AXe

• N2

XN

Figure 68. U vs ion beam angle of incidence, forward sputtering case.

119

3.5

3

2.5

2

1.5 If

15>

0.5 -

0

A
9

30 40 50 60 70

ion beam angle of incidence

S
X
A

G Ar

♦ Ne

AXe

• N2

*N

Figure 69. n vs ion beam angle of incidence, forward sputtering case.

For the backward sputtering case, n is consistently less than 1 for the

ground state and approximately 1 for the first excited state. This is consistent

with a model in which the incident ion is back reflected toward the surface,

preferentially exiting in the surface normal direction due to interactions with

the target atoms. The target atoms will thus exit at angles close to the surface,

resulting in a broad distribution with a distinctly under cosine appearance. If

the sputtered atoms are in an excited state and exit at large angles with

respect to the surface normal, they can be quenched by interaction with the

surface and the distribution of the surviving atoms will become more peaked.

This explains why the excited state distributions are consistently more peaked

(larger n) than the ground state distributions.

The value of U is consistently smaller for the back sputtered curves

than the forward sputtering curves. If the predominant mechanism for the

back sputtering behavior is caused by the back reflections of the incident ion,

120

there could be very little interaction with the surface. The ion will penetrate

very shallowly before impacting with a target atom and returning to the

surface. The ion can possibly sputter some surface atoms on its way out, but

will still retain a large amount of its initial energy upon ejection. The surface

interaction will be limited and so the U terms are consistently small. Figure

70 and Figure 71 are plots of U and n versus the ion beam incidence angle for

back sputtered atoms obtained for the gases examined in this thesis. There is

more scatter in the data than in the forward sputtering case. Due to machine

limitations, fewer data points can be recorded in the backward direction

causing more variability in the fits. The behavior described above is

essentially the same for all the gases used in this thesis.

30

25

20

15

10

5

0 it
8

-X.

30 40 50 60

ion beam incidence angle

70

♦
D

□ Ar

♦ Ne

AXe

• N2

Figure 70. U versus ion beam incidence angle, backward sputtering case.

2.5

2 +

1.5

1 +

0.5

0

-0.5 3?

-1

-1.5

-2

40 50

♦
D
8

—f—

60

ion beam incidence angle

70

G Ar

♦ Ne

AXe

• N2

XN

121

Figure 71. n vs ion beam incidence angle, backward sputtering case.

Aijun Li conducted molecular dynamic simulations of a Zr crystal. He

found that the majority of the sputtering events occur in the top surface layers

with over 96% of the sputtered atoms originating in the two top surface

layers. Sputtering is truly a surface phenomena. The Roosandaal Sanders

theory arbitrarily introduces a surface binding energy using a planer binding

potential. This treats the surface interaction as a constant for all masses and

ion incident angles. This treatment clearly underestimates the effect of the

surface and does not reproduce experimental observations. Treating the

surface binding energy as an adjustable parameter, and hypothesizing its

function as a surface interaction term produces consistent behavior. The

modified Roosandaal Sanders equation can be used in this framework to

provide insight into the sputtering mechanisms occurring. The experimental

data in this thesis can be explained in this manner and provide experimental

verification of sputtering as a surface phenomena. Unfortunately, this

method does not provide predictive capabilities. Improvements to the

122

analytical theory of sputtering should concentrate on how to improve the

model of the surface as well as the ion-surface interaction.

Future Work

Experiments to probe the ion surface interaction can be accomplished

using the current apparatus with some modifications. The instrument can

currently record angular resolved sputtering data. Energy and angular

resolved spectra are desired to determine if there is an energy difference

between the spectrum of forward and backward sputtered atoms. A Doppler

shift detector could be added to the detector assembly to provide the energy

measurement. This modification would require a frequency scan to be

accomplished at each angle, resulting in a prohibitively long experiment

using the current single photon counting technique. The predominant source

of background counts comes from scattered laser light. The dark counts and

the background ion counts are relatively constant and an order of magnitude

smaller. Changing the detection system to the current signal off the

photomultiplier in conjunction with a lock in technique could provide a more

reasonable experiment duration. The ion beam would be chopped and the

chopping frequency used as the reference for the lock in detector. Changing

to a lock-in technique would also provide the capability of elevated

temperature sputtering as the thermal photons created will not affect this

technique.

The Auger spectrometer should also be replaced with a retractable

LEED Auger system. The angular range of the instrument is currently limited

by the Auger in one direction and by the ion beam in the other direction.

123

Using a retractable Auger system removes one of these limitations and the

LEED capability will allow the examination of the surface as the sputtering

process evolves.

The above changes would provide expanded capability to explore the

ion surface interaction occurring during sputtering. This is the weak link in

the current analytical models of sputtering and more work should

concentrate in this area.

List of References

i
Behrisch, R. (ed.); Sputtering by Particle Bombardment I, Topics in Applied

Physics, Vol. 47, Chapter 2, (Springer, Berlin, Heidelberg, New York 1981).

2
Sigmund, P.; Sputtering by Particle Bombardment I, Topics in Applied Physics,

Vol. 47, p 11,, (Springer, Berlin, Heidelberg, New York 1981).

3
Behrisch, R. (ed.); Sputtering by Particle Bombardment II, Topics in Applied

Physics, Vol. 52, Chapter 7, (Springer, Berlin, Heidelberg, New York 1983).

4 Espy, S. L., et al; Pre. SPIE - Int. Soc. Opt. Eng., 1761,130 (1992).

5
Terwagne, G.; Lucas, S.; and Bodart, F.; Nucl. Instrum. Methods Phys. Res.,

Sect B, B59 (1991).

Whitaker, T; Ph.D. Thesis, University of Washington, 1992.

Li, A; Ph.D. Thesis, University of Washington, 1993.

Grove, W. R.; Philos. Mag., 5,203(1853).

9 Goldstein, E.; Verh. Dtsch. Phys. Ges., 4,228,237(1902).

10
Stark,].; Die Elektrizität in Gasen, (Barth, Leipzeg 1902).

125

11 Stark, J.; Z. Elektrochem., 14, 752(1908); 15,509 (1909).

12 Kingdon, K. H.; Langmuir, L; Phys. Rev., 20,107(1922); 21,210(1923); 22,

148(1923).

13
Seeliger, R.; Sommermeyer, K.; Z. Phys., 93,692 (1935); Ann. Phys. (Leipzig)

25,481(1936); Z. Phys., 119,482(1942).

14
Wehner, G. K.; Phys. Rev., 102,690(1956).

15
Lamar, E. S.; Compton, K. T.; Science, 80,541(1934).

1 fi
Sigmund, P.; Sputtering by Particle Bombardment I (Behrisch, Ed.), Topics in

Applied Physics, Vol. 47, Chapter 2, (Springer, Berlin, Heidelberg, New York

1981).

17
Goldstein, H.; Classical Mechanics, (Addison-Wesley Publishing Company,

1980).

18
Child, M. S.; Molecular Collision Theory, (Academic Press, 1974).

19
Mcdaniel, E.; Atomic Collisions, p. 3; (Wiley Interscience, 1989).

126

20
Pauley, H.; Atom-Molecule Collision Theory (Bernstein, ed.), Chap. 4; (Plenum

Press 1979).

21
Torrens, I. M.; Interatomic Potentials, Academic Press (New York 1972).

22
McQuarrie, D.; Statistical Mechanics, Chap. 10, (Harper and Row 1976).

23
Torrens, I. M.; Interatomic Potentials, Academic Press (New York 1972).

24
Sigmund, P.; Rev. Roum. Phys., 17(7), 823(1972).

25
Gradshetyn, I. S.; Table of Integrals, Series, and Products, Academic Press

(1980).

Oft

Marion, J. B.; Classical Dynamics of Particles and Systems, Chap. 9, Academic

Press (1970).

27
Sigmund, P.; Sputtering by Particle Bombardment I (Behrisch, Ed.), Topics in

Applied Physics, Vol. 47, Chapter 2, (Springer, Berlin, Heidelberg, New York

1981).

28
Almen, O. and Bruce; Nucl. Instr. Meth., 11,257 (1961).

29
Thompson, M. W.; Philos. Mag., 18,377 (1968).

127

30
Thompson, M. W.; Phys. Reports, 69(4), 336 (1981).

31 Sigmund, P.; Phys. Rev., 184,383 (1969).

32
Anderson, H. H.; Stenum, B.; Sorenson, T.; and Whitlow, H. J.; Nucl. Instr.

Meth., B6,459 (1985).

33
Roosendaal, H. E. and Sanders, J. B.; Radat. Eff., 52,137 (1980).

34
Sanders, J. B. and Roosendaal, H. E.; Radat. Eff., 24,161 (1975).

35
Hofer, W. O.; Sputtering by article Bombardment III, Topics in Applied

Physics, Vol. 64, (Behrisch ed.), (Springer, Berlin, Heidelberg, New York

1991).

Anderson, H. H.; Stenum, B.; Sorenson, T.; and Whitlow, H. J.; Nucl. Instr.

Meth., B6,459 (1985).

37
Brauer, G.; Hasselkamp, D.; Kruger, W.; and Scharman, A.; Nucl. Instr.

Meth., B12,458 (1985).

38 Schwebel, C; Pellet, C; and Gautherin, G.; Nucl. Instr. Meth., B18,525

(1987).

128

39
Hofer, W. O.; Sputtering by article Bombardment III, Topics in Applied

Physics, Vol. 64, (Behrisch ed.), (Springer, Berlin, Heidelberg, New York

1991).

40
Dahl, D. A.; Delmore, J. E.; The SIMION PC/PS2 Users Manual Version 4.0;

Prepared for U.S. Department of Energy under DOE contract No. DE-AC07-

761D01570: EG&G Idaho: Idaho Falls, ID, 1988.

41
Hefter, U. and Bergmann, K.; In Atomic and Molecular Beam Methods; Scoles,

Giancinto, Ed.; Oxford University Press: New York, 1988; Chapter 9.

42
Corliss, C. H. and W.R. Bozman, Experimental Transition Probabilities for

Spectral Lines of Seventy Elements, NBS Monograph 53, US Department of

Commerce (1962).

43
Pellin, M. J.; Wright, R. B.; and Gruen, D. M.; /. Chem. Phys. 74(11) 6448

(1981).

44
Hannaford, P. and Lowe, R. M.; Opt. Eng. 22(5) 532(1983).

45
Anderson, H.H.; Stenum, B.; Sorenson, T.; and Whitlow, H. J.; Nucl. Instr.

Meth., B6,459 (1985).

129

46
Brauer, G.; Hasselkamp, D.; Kruger, W; and Scharmn, A.; Nucl. Instr. Meth.,

B12,458 (1985).

47
Schwebel, C; Pellet, C; and Gautherin, G.; Nucl. Instr. Meth., B18,525

(1987).

48
Hofer, W. O.; Chapter 2 in Sputtering by Particle Bombardment III, Eds.:

Behrisch, R and Wittmaack, K.; Topics in Appl. Phys., 64 (Springer-Verlag

Berlin Heidelberg, 1991).

49
Garrison, B. J.; Winograd, N.; Lo, D.; Tombrello, T. A.; Shapiro, M. H.; and

Harrison, D. E., Surf. Sei. 180 L129 (1987).

50
Jackson, D. P., Rad. Eff. 18 185(1973)

51 Jackson, D. P., Can.}. Phys. 53 1513 (1975).

52
Garrison, B. J.; Winograd, N.; Lo, D.; Tombrello, T. A.; Shapiro, M. H; and

Harrison, D. E., Surf. Sei. 180 L129 (1987).

Appendix A - Computer Programs

131

BASIC Programs

132

ANGSCANP.BAS

10 REM ANGSCANP V1.0, (ROT&CNT) modified 8/13/90 to increase DELAY(3) (TW)

20 REM Graphic boundaries and flag offset are set at 910-920 (TW)

30 REM modified 08/20/92: solenoid operation, waitdelay (WM)

40 REM 08/27/92: program structure (WM)

50 REM 10/07/93: program structure (PRS)

60 REM files needed : hbasic.exe, basica.com, code.bas, camio.bas

70 '

80 ' *** Find data segment above BASICA ***

90 '

100 CLEAR: CLS ' Set all variables to "0"

110 DEF SEG=0 ' Go to low memory to find BASICA loc.

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

140 DEF SEG=CAMSEG

150 '

160 ' *** Open COM channel to Apple Comp. ***

170 '

180 OPEN "COM1:9600,N,8,1" AS #2

190 MSG$="READ"+CHR$(13):GOSUB 4120

200 '

210 ' *** Dimension of variables ***

220 '

230 DIM.OWTBL%(32),MULTBL%(32),DAC0(3),DAC2(3),TDEL(3),SIG(3)

240 DIM WVMTR#(3),D24%(2),LABEL$(3)

250 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9

260 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27

270 DATA 3,28,14,29,7,30,15,31

280 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT 'Load in tables for conversion of

290 FOR 1=1 TO 32: READ MULTBL%(I): NEXT 'time.

300 '

310 ' *** Setting parameters ***

320 '

330 PRINT""

340 PRINT "y minimum value for screen plot: ";:INPUT PMIN

350 PRINT "y maximum value for screen plot: ";:INPUT PMAX

360 PFAC=(PMAX-PMIN)

370 XM=600: YM=400: YM2=YM/2

380 '

133
390 ' *** Program header ***

400 '

410 CLS:

420 '

430 PRINT "A N G S C A N P (1.0)": PRINT""

440 PRINT "This program physically SCANS the DETECTOR using user-specified"

450 PRINT "steps and counts for a specified time at each position with laser on,"

460 PRINT "ion beam on, then counts for an equal time with all on,"

470 PRINT "and stores all three counts plus the darkcount onto disk."

480 PRINT""

490 BEEP: PRINT"": PRINT "Hit any key when ready..."

500 A$=INKEY$: IF A$="" THEN 500

510 '

520 ' *** Poke in machine language routinge ***

530 '

540 PRINT "": PRINT "Loading PC21 & CAMAC I/O drivers ..."

550 '

560 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

570 FOR X = 0! TO 127!

580 INPUT #1, J ' Install machine code

590 POKE X,J

600 NEXT

610 CLOSE #1

620 '

630 ' *** Set all program variables ***

640 '

650 ADDRESS0/» = 768 ' PC21 base address

660 CONTROL = 96 ' Normal state of PC21 Control Byte

670 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

680 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

690 PC21 WRITE = 0! ' Address of PC21WRITE subroutine

700 PC21READ = 49! ' Address of PC21READ subroutine

710 '

720 DAC# = 12 'DAC module in CAMAC slot #12

730 ' ch#: 0:shutter, l:not used, 2:ion beam shutter

740 ' 3:notused

750 TIM# = 10 ' TTMER/SCALER module in CAMAC slot #10

760 DELAY1# = 1 ' Delaytime for solenoid shutter in sec.

770 DELAY2# = 2 ' Delaytime for ion beam response in sec.

780 '

790 DATDIR$ = "C:\SPUTTER\ANGDAT\" ' Directory for data files

134
800 '

810 CMSG$=" " 'ClearString

820 '

830 FLGOFF = 2.5 ' Offset for 0 degree detector position

840 MAXANG = 110 ' Maximum detector position due to FIBER !!!

850 '

860 '*** PC21 RESET **»

870 '

880 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high

890 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low

900 FOR Y=l TO 500: NEXT ' Wait for BMA

910 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low

920 OUT ADDRESS%+1, (CONTROL OR FAULT) ' Control Bit 5 high

930 '

940 ' *** Load CAMAC drivers and initialize crate ***

950 '

960 BLOAD "C: \ BASICDIRX NEW\ CAMIO",128 ' Load drivers into data segment

970 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

980 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

990 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot

1000 OUT &H240,0 ' Clear high write-only data register

1010 I%=64: CALL CAMCL(I%) ' Reset crate

1020 I%=1: CALL CAMCL(I%) ' Initialize crate

1030 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 3260 ' Write timer/sealer LAM mask-generate

1040 ' LAM when channel 1 finishes counting

1050 GOSUB 3370

1060 '

1070 ' *** Initialization ***

1080 '

1090 A1%=0:D1%=0: GOSUB 3910 ' Laser beam shutter should be open!

1100 PRINT "Laser beam shutter: OPEN!"

1110 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 3260 ' Ion beam shutter should be open!

1120 PRINT "Ion beam shutter : OPEN!"

1130 '

1140 PRINT "Detector : Moving to 0 degree!"

1150 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2910 ' Moving detector to 0 degree!

1160 POS0=0: POSl=2: GOSUB 3110 ' Make sure not on an endpoint

1170 POS0=0:POSl=-10: GOSUB 3110

1180 IF ENDFLG=0 THEN 1170

1190 POS0=0: POSl=FLGOFF: GOSUB 3110: POS0=0 ' Compensate for offset

1200 '

135
1210 ' *** Define data file name ***

1220 '

1230 PRINT""

1240 BEEP: PRINT "Data file name:";: INPUT FILNAM$

1250 ON ERROR GOTO 1340

1260 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists.

1270 ' File exists. Ask user what to do!!

1280 BEEP: BEEP

1290 PRINT "File exists! Continue [y/n]: ? "

1300 V$=INKEY$: IF V$="" THEN GOTO 1300

1310 IF V$="Y" OR V$="y" THEN GOTO 1350 ' Overwrite existing file.

1320 IF V$="N" OR V$="n" THEN GOTO 1240 ' Get a new name for file.

1330 GOTO 1300

1340 RESUME 1350 ' File nonexistent. Proceed.

1350 ON ERROR GOTO 0

1360 CLOSE #1 ' Close temporary input file.

1370 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file.

1380'

1390 ' *** Print file header **»

1400'

1410 PRINT #l,"Data stored by ANGSCAN1.0 on ";DATE$;" at ";TIME$

1420 PRINT "File header:";: INPUT HDR$

1430 PRINT #1, "File header: ";HDR$

1440 IF NOT EOF(2) THEN ASMSG$=INPUT$(1,#2): GOTO 1430 'switch to settle.

1450'

1460 ' *** Enter parameter for measurement ***

1470'

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT ITIM

1490 IF ITEM-cl THEN ITIM=1

1500 IF ITIM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO1480: PRINT ""

1510 T=ITIM: GOSUB 3660: TSAVE%=TIMEC%

1520 MSG$=" sec integration.": PRINT #1,STR$(T);MSG$

1530 PRINT "Enter # spectra (1-100) :";: INPUT NSPEC%

1540 IF NSPEC%<1 OR NSPEC%>100 THEN 1530

1550 PRINT #1,NSPEC%;" spectra."

1560 PRINT "Starting angle :";: INPUT ANG0

1570 IF ANG0 > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1560

1580 PRINT "Ending angle :";: INPUT ANGEND

1590 IF ANGEND > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1580

1600 PRINT "Degrees per step :";: INPUT DELANG

1610 NINC=INT((ANGEND-ANG0)/DELANG+.5): ANGEND=ANG0+NINC*DELANG

136
1620 IF NINC<0 THEN NINC=-NINC: DELANG=-ABS(DELANG)

1630 PRINT "Scanning from ";ANG0;" degrees to ";ANGEND;" degrees in ";NINC;" steps."

1640 PRINT #1, "Scanning from";ANG0;" degrees to ";ANGEND;" degrees in ";NINC;" steps."

1650 PRINT "Ion sputter angle: ";:INPUT Al

1660 PRINT #1, "Ion sputter angle: ";A1

1670 PRINT "Sample Metal: ";:INPUT Bl$

1680 PRINT #1, "Sample Metal: ";B1$

1690 PRINT "Sputter Ion : ";:INPUT B2$

1700 PRINT #1, "Sputter Ion : ";B2$

1710 PRINT "photomultiplier voltage :";:INPUT A2

1720 PRINT #1, "photomultiplier voltage :";A2

1730 PRINT "Ion beam current:";: INPUT A3

1740 PRINT #1, "Ion beam current:"; A3

1750 PRINT "Ion beam voltage :";: INPUT A4

1760 PRINT #1, "Ion beam voltage :"; A4

1770 PRINT "Moving detector to ";ANG0;" degree"

1780 POS0=0: POSl=ANG0: GOSUB 3110

1790 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP

1800 BEEP: PRINT "Laser frequency (cmA-l) :";: INPUT NRG#

1810 PRINT #1, "Laser frequency (cmA-l) :";NRG#

1820 PRINT "laser power(milliwatts) :";:INPUT A5

1830 PRINT #1, "laser power (milliwatts):"; A5

1840 PRINT "number of steps before pause:";:INPUT NSTEPS

1850 PRINT #1, "number of steps before pause:"; NSTEPS

1860 PRINT #1," I all on I - I laser on I - I ion on I + I dark count I = I Total count I"

1870 NRG$=STR$(NRG#): MSG$="GOK"+NRG$+CHR$(13): GOSUB 4120 ' Tell AUTOSCAN to go there.

1880 MSG$="PEAK BRF"+CHR$(13):GOSUB 4120

1890 MSG$="PEAK ETA"+CHR$(13):GOSUB 4120

1900'

1910 ' *** Initialize plotting on the screen ***

1920'

1930 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

1940 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG#

1950 LOCATE 2,50: PRINT FILNAM$

1960 DELX=XM/NINC 'DELX used for plotting

1970 '

1980 ' *** Starting the data collection ***

1990'

2000 DAC0(1)=6540:DAC0(2)=0:DAC0(3)=0 ' Settings for DAC

2010DAC2(1)=32700:DAC2(2)=32700:DAC2(3)=0

2020 TDEL(1)=DELAY2#:TDEL(2)=DELAY1#:TDEL(3)=DELAY1# ' Setting delay after solenoid and ion beam

137
2030 LABEL$(l)="Ion beam ON":LABEL$(2)="All ON":LABEL$(3)="Laser on"

2040'

2050 ' *** NSP data collection loop ***

2060'

2070 FOR NSP=1 TO NSPEC% ' Start scans

2080 LOCATE 18,30: PRINT'collecting dark counts for 10 sec!"

2090 N%=DAC#:F%=16:A%=2:D%=0:GOSUB 3260 'ion beam shutter closed

2100 A1%=0:D1%=6540:GOSUB 3910 'laser shutter closed

2110 T=10:GOSUB 3660:GOSUB 3510 'wait delay

2120 T=10:GOSUB 3660:GOSUB 3420 10 sec dark count collection

2130 SIGNAL* = D24%(1) AND 32767:IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

2140 FOR 1=1 TO D24%(2):SIGNAL#=SIGNAL#+65536#:NEXT I

2150 DARKCNT=CINT(SIGNAL#/10):GOSUB 3590

2160'

2170 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

2180 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG#

2190 LOCATE 2,50: PRINT FILNAM$

2200 ' LOCATE 2,3: PRINT "spec#";NSP

2210 X0%=0 ' Initialize x-axis of plot

2220 POSl=ANG0: GOSUB 3110 ' then must reset detector,

2230 NNCOUNT=0

2240 FOR INCCNT=0 TO NINC ' Begin loop incrementing angle.

2250 LOCATE 2,3: PRINT "spec#";NSP

2260 IF INCCNT=0 THEN GOTO 2300 ' Don't need angle increment 1st time.

2270 POS1 =DELANG*INCCNT+ANG0: GOSUB 3110' Move there.

2280 TIM=TIMER

2290 IF TTMER-TIM<.5 THEN 2290

2300 LOCATE 18,1: PRINT"

2310 LOCATE 18,1: PRINT USING "Angle = #######.###";POS0

2320 '

2330 MSG$="READ"+CHR$(13):GOSUB 3960

2340 '****

2350 WVMTR#= VAL(MID$(RMSG$,2,10))

2360 DELNRG= WVMTR#-NRG#

2370 '****

2380 IF ABS(DELNRG)>.006 THEN BEEP: BEEP:

2385 MSG$="PEAK BRF"+CHR$(13): GOSUB 3960

2390 MSG$="PEAK ETA"+CHR$(13):GOSUB 3960

2400 MSG$="GOK"+STR$(NRG#)+CHR$(13):GOSUB 3960

2410 AVDEL= 0

2420 FOR 11=1 TO 3

138
2430 MSG$="READ"+CHR$(13): GOSUB 3960 ' and verify wavelength.

2440 WVMTR#(II)=VAL(MID$(RMSG$,2,10))

2450 DELNRG=WVMTR#(II)-NRG#

2460 IF ABS(DELNRG)>.006 THEN GOTO 2385

2470 IF ABS(DELNRG)<=.0017 THEN GOTO 2530

2480 IF ABS(DELNRG)>.0017 THEN AVDEL=AVDEL+DELNRG

2490 NEXT II

2500 AVDEL=AVDEL/3!

2510 MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3960

2520 GOTO 2410

2530 FOR DACSW=1 TO 3

2540 LOCATE 18,30: PRINT"

2550 LOCATE 18,30: PRINT LABEL$(DACSW)

2560 N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 3260 ' Set DAC on/off depending on

2570 A1%=0:D1%=DAC0(DACSW): GOSUB 3910 ' Dacsw

2580 T=TDEL(DACSW): GOSUB 3660: GOSUB 3510 ' Wait for time delay!

2590 TTMEC%=TSAVE%: GOSUB 3420 ' now Count for TSAVE%

2600 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

2610 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I

2620 SIG(DACSW)=SIGNAL#/ITTM: GOSUB 3590

2630 NEXT DACSW

2640 '

2650 DELSIG=SIG(2)-SIG(3)-SIG(1)+DARKCNT

2660 PRINT #1,SIG(2),SIG(3),SIG(1),DARKCNT,DELSIG

2670 LOCATE 19,1: PRINT "

2680 LOCATE 19,1: PRINT INCCNT;": ";SIG(2);"-";SIG(3);"-";SIG(1);"+";DARKCNT;"=";DELSIG

2690 YP%=(YM/PFAC)*(PMAX-DELSIG): XP%=INCCNFDELX: IF YP%>YM2 THEN YP%=YM2

2700 DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP%

2710 SIG(1)=0:SIG(2)=0:SIG(3)=0 'Reset accumulated signals for next frequency

2720 NNCOUNT=NNCOUNT+l

2730 IF NNCOUNT=NSTEPS THEN GOSUB 4210

2740 NEXT INCCNT

2750 '

2760 BEEP

2770 PRINT #l,"xxxxxxxxxxx"

2780 NEXT NSP

2790'

2800 CLOSE

2810 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Angscanl.O with 'E')"

2820 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2820

2830 END

139
2840'

2850 '

2860 ' *** SUBROUTINES ARE LOCATED HERE !!!»**

2870'

2880 ' *** PC21 WRITE ***

2890'

2900 BFLAG%=0

2910 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1

2920 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$/'pb") THEN BFLAG%=1

2930 IF INSTR(COMMAND$;'XlB") OR INSTR(COMMAND$/'xlb") THEN BFLAG%=1,

2940 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

2950 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write

2960 RETURN

2970'

2980 ' *** PC21 READ ***

2990'

3000 ANSWER$=" "+"" ' Reserve string space for response

3010 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

3020 IF BFLAG%=0 THEN RETURN

3030 NUM#=0: FOR X=l TO 4

3040DIGIT%=ASC(MID$(ANSWER$,X,1))

3050 NUM#=NUM#+DIGIT%»256A(4-X): NEXT

3060 ANSWER$=STR$(NUM#)

3070 RETURN ' BFLAG% identifies binary report commands

3080'

3090 ' *** Move Detector POS1-POS0 degrees (check for end switch) ***

3100'

3110 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-"

3120 AVTTM=DEGM5: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5

3130 STEPS=INT(DEG*4000/180+.5) ' Convert degrees to motor steps

3140 STEPSS=MID$(STR$(STEPS),2)

3150 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC

3160 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2910 ' Move & signal when done

3170 T0=TIMER

3180 GOSUB 3000: IF LEFT$(ANSWER$/1)=CHR$(13) THEN 3210 ' Keep going till end

3190 T1=TIMER: IF T1-T0<AVTIM THEN 3180 ' If not done after AV1TM,

3200 ENDFLG=1: GOTO 3220 ' End switch must have been hit.

3210 POS0=POS0+DEGAC

3220 RETURN

3230'

3240 ' »** Main WRITE /READ Subroutines to CAM AC ***

140
3250'

3260 CALL CAMO(N%,F%,A%,D%,Q%,X%)

3270 RETURN

3280'

3290 CALL CAMI24(N%/F%,A%,D24%(1),Q%/X%)

3300 RETURN

3310'

3320 CALL CAMI(N%,F%,A%,D%,Q%,X%)

3330 RETURN

3340'

3350 ' *** initialize DAC, put all channels (0...3) to OV! ***

3360'

3370 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 3260: NEXT

3380 RETURN

3390'

3400 ' *** Set timer/sealer ***-

3410'

3420 N%=TIM#:F%=17A%=0:D%=TIMEC%: GOSUB 3260 ' D% must contain time.

3430 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3260 ' Start counting

3440 CALL CAML(L%) :IF L%=0 THEN 3440 ' Wait for count to end

3450 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3260 ' Clear timer LAM

3460 N%=TIM#:F%=0: A%=1: GOSUB 3290: GOTO 3590 ' Read sealer

3470 RETURN

3480'

3490 ' *** Wait delay ***

3500'

3510 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 3260 ' D% must contain time!

3520 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3260 ' Start wait delay

3530 CALL CAML(L%): IF L%=0 THEN 3530 ' Wait for time to end

3540 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3260: GOTO 3590 ' Clear timer LAM

3550 RETURN

3560 '

3570 ' *** Clear timer/sealer »**

3580 '

3590 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 3260

3600 N%=TIM#:F%=9:A%=1:D%=0: GOSUB 3260

3610 RETURN

3620 '

3630 ' *** Subroutine for converting time (T) to a special

3640 ' formatted integer (TIMEC%) used by CAMAC timer. ***

3650'

141
3660 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0

3670 TBAS=10ATB%: T=T/TBAS: N=0

3680 IF T<2 GOTO 3700

3690 N=N+1: T=T/2: GOTO 3680

3700 J=32*(T-1)+1

3710 IOVF%=N-OVFTBL%(J)

3720 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3670

3730 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3670

3740 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3780

3750 MULT%=MULTBL%(J)

3760TA=TBAS*(2*MULT%+l)*2A(IOVF%+4)

3770TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB%

3780 T=TS

3790 RETURN

3800'

3810 ' *** Initialize the solenoid shutter (result: shutter is CLOSED!) ***

3820'

3830 N%=DAC#:F%=16:A%=1:D%=32700: GOSUB 3260

3840 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 3260

3850 N%=DAC#:F%=16:A%=0:D%=0: GOSUB 3260

3860 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 3260

3870 RETURN

3880'

3890 ' *** Open/close solenoid shutter ***

3900'

3910 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 3260

3920 RETURN

3930'

3940 ' *** Send Message to Apple via RS232 ***

3950'

3960 LOCATE 20,1: PRINT ">» Remote Apple control:"

3970 LOCATE 21,1: PRINT CMSG$: LOCATE 21,1

3980 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

3990 PRINT MSG$: RMSG$=""

4000 IF EOF(2) THEN 4000

4010 WHILE NOT EOF(2)

4020 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

4030 IF ASMSG$=CHR$(13) GOTO 4080

4040 RMSG$=RMSG$+ASMSG$: WEND

4050 IF ASC(ASMSG$)<>41 THEN GOTO 4000

4060 RETURN

142
4070'

4080 LOCATE 21,1: PRINT CMSG$;: LOCATE 22,1: PRINT CMSG$;

4090 PRMSG$=RMSG$: RMSG$="": LOCATE 21,1: PRINT PRMSG$;

4100 GOTO 4040

4110 '

4120 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

4130 PRINT RMSG$=""

4140 IF EOF(2) THEN 4140

4150 WHILE NOT EOF(2)

4160 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

4170 IF ASMSG$=CHR$(13) THEN RMSG$=""

4180 PRINT ASMSG$;: RMSG$=RMSG$+ASMSG$: WEND

4190 IF ASC(ASMSG$)<>41 THEN GOTO 4140

4200 RETURN

4210 BEEP:PRINT"":PRINT"flash sample and hit any key to continue"

4220 A$=INKEY$:IF A$="" THEN 4220

4230 NNCOUNT=0

4240 RETURN

143

CCOUNT.BAS

1 MAX=60000#

10 DIM OVFTBL%(32),MULTBL%(32)

20 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7/9,8,9

30 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27,3,28,14,29,7,30,15,31

40 CLS

50 ISET=0:T=1

60 FOR 1=1 TO 32:READ OVFTBL%(I):NEXT

70 FOR 1=1 TO 32:READ MULTBL%(I):NEXT

80 PRINT "CCOUNT: This program continously counts pulses from the photomultiplier"

90 PRINT" for a user-specified time."

100'

120 PRINT: PRINT "Loading PC21 and CAMAC I/O drivers."

130 GOTO 520 ' Load machine language I/O routine

140 GOSUB 300 ' Set all program variables and reset the PC21

150 GOTO 740 ' Initialize crate and run main program

160TS=T:TB%=INT((LOG(T/1000))/2.30258):ERFLG%=0

170 TBAS = 10ATB%:T=T/TBAS:N=0

180 IF T<2 GOTO 200

190 N=N+l:T=T/2:GOTO 180

200 J=32*(T-1)+1

210 IOVF%=N-OVFTBL%g)

220 IF IOVF%<0 THEN TB%=TB%-l:GOTO 170

230 IF IOVF%>15 THEN TB%=TB%+l:GOTO 170

240 TB%=TB%+6:IF TB%<0 OR TB%>7 THEN PRINT "Time outside range!":ERFLG%=l:GOTO 280

250 MULT% = MULTBL%(J)

260 TA=TBAS*(2*MULT%+l)*2A(IOVF%+4) .

270 D%=(128!*MULT%)+(8!*IOVF%)+TB%:DSAVE%=D%

280 T=TS: RETURN

290 ' ****** Set all program variables ******

300 ADDRESS% = 768 ' PC21 base address

310 CONTROL = 96 ' Normal state of PC21 Control Byte

320 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

330 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

340 PC21 WRITE = 0! ' Address of PC21WRITE subroutine

350 PC21READ = 49! ' Address of PC21READ subroutine

360 ' ****** PC21 RESET ******

370 OUT ADDRESS%+1, (CONTROL OR CRASH) 'Control Bit 2 high

380 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) Control Bit 2 low

144
390 FOR Y=l TO 500:NEXT 'wait for BMA

400 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) 'Control Bit 5 low

410 OUT ADDRESS%+1, (CONTROL OR FAULT) 'Control Bit 5 high

420 RETURN

430 ' ****** PC21 WRITE ******

440 BFLAG%=0

450 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$/'wl") THEN BFLAG%=1

460 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$/'pb") THEN BFLAG%=1

470 IF INSTR(COMMAND$/'XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1

480 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

490 CALL PC21WRITE(COMMAND$/ ADDRESS%) ' Execute machine language write

500 RETURN

510 ' *** Clear memory and poke in machine language routines ***

520 GOSUB 690 ' Find data segment above BASICA

530 OPEN "CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

540 FOR X = 0! TO 127!

550 INPUT #1,1 ' Install machine code

560 POKE X J

570 NEXT:CLOSE

580 GOTO 140

590 ' ****** PC21 READ ******

600 ANSWER$=" "+"" ' Reserve string space for response

610 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

620 IF BFLAG%=0 THEN RETURN

630 NUM#=0:FOR X=l TO 4

640 DIGLT%=ASC(MID$(ANSWER$,X,1))

650NUM#=NUM#+DIGIT%*256A(4-X):NEXT

660 ANSWER$=STR$(NUM#)

670 RETURN ' BFLAG% identifies binary report commands

680 ' ****** Find data segment above BASICA ******

690 DEF SEG=0 ' Go to low memory to find BASICA loc.

700 BDATSEG=PEEK(&H510)+256*PEEK(&H511) ' BASICA data segment is in &H510-511

710 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

720 DEF SEG=CAMSEG:RETURN

730 • ****** Load CAMAC drivers and initialize crate ******

740 BLOAD "CAMlö',128 ' Load drivers into data segment

750 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

760 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

770 CC%=1:CALL CRATE(CC%) ' Activate controller in Jl slot

780 OUT &H240,0 ' Clear high write-only data register

790 I%=64:CALL CAMCL(I%) ' Reset crate

145
8001%=1 :CALL CAMCL(I%) ' Initialize crate

810 N%=10:F%=17:A%=13:D%=1:GOSUB 1050 ' Write timer/sealer LAM mask-generate

820 ' LAM when channel 1 finishes counting

830 PRINT

840 PRINT "Enter time (in seconds) to count (0 to exit program):"

850 INPUT T$

860 IF T$ = "0" GOTO 1070

870 PRINT

880 ISET = BET +1: IF T$="" AND ISET >1 THEN D%=DSAVE%:GOTO 920

890 IF ISET=1 AND T$="" THEN T$="l"

900 T=VAL(T$):IF T<.000001 OR T>1000000! THEN PRINT "Out of Range":GOTO 840

910 GOSUB 160:IF ERFLG%<>0 THEN PRINT "Out of Range": GOTO 840

920 F%=17:A%=0:GOSUB 1050 ' Set preset register

930 A%=4:D%=l:GOSUB 1050 ' Start counting

940 CALL CAML(L%):IF L%=0 THEN 940 * Wait for count to end

960 F%=23:A%=12:D%=l:GOSUB 1050 ' Clear timer LAM

970 F%=0:A%=1:CALL CAMI24(N%,F%,A%,D24%(1)/Q%/X%) ' Read sealer

980 SIGNAL#=D24%(1) AND 32767:IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

985 ,"*SIGNAL#=D24%(1): IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

990 FOR 1=1 TO D24%(2):SIGNAL#=SIGNAL#+65536#:NEXT I

991 SIG=(SIGNAL#/TA)

1000 PRINT SIG;" counts in ";TA;" seconds."

1010F%=16:A%=0:N%=12:D%=(32765.2/MAX)*SIGNAL#/TA

1011 IF D% > 32767 THEN D% = 32767

1012 CALL CAMO(N%,F%,A%,D%/Q%,X%)

1013 N%=10

1020 F%=9:A%=0:D%=0:GOSUB 1050 ' Clear timer

1030 F%=9:A%=1:D%=0:GOSUB 1050 'Clear sealer

1040 D%=DSAVE%:GOTO 920 ' Loop back for next scan

1050 CALL CAMO(N%,F%,A%,D%,Q%/X%)

1060 RETURN

1070 END

146

COVER.BAS

10 REM Cover V1.0, (coverage decrease) modified 8/13/90 to increase DELAY(3) (TW)

20 REM Graphic boundaries and flag offset are set at 910-920 (TW)

30 REM modified 08/20/92: solenoid operation, waitdelay (WM)

40 REM 08/27/92: program structure (WM)

50 REM 09/30/93: program structure (PRS)

60 REM files needed : hbasic.exe, basica.com, code.bas, camio.bas

70 '

80 ' *** Find data segment above BASICA ***

90 '

100 CLEAR: CLS ' Set all variables to "0"

110 DEFSEG=0 ' Go to low memory to find BASICA loc.

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

140 DEF SEG=CAMSEG

150 '

160 ' *** Open COM channel to Apple Comp. ***

170 '

180 OPEN "COM1:9600,N,8,1" AS #2

190 MSG$="READ"+CHR$(13):GOSUB 3830

200 '

210 ' *** Dimension of variables ***

220 '

230 DIMOWTBL%(32),MULTBL%(32),DAC0(4),DAC2(4),TDEL(4),SIG(4)

240 DIM WVMTR#(3)/D24%(2),LABEL$(4)

250 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9

260 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27

270 DATA 3,28,14,29,7,30,15,31

280 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT 'Load in tables for conversion of

290 FOR 1=1 TO 32: READ MULTBL%(I): NEXT 'time.

300 '

310 ' *** Setting parameters ***

320 '

330 PRINT "y minimum value for screen plot: ";:INPUT PMIN

340 PRINT "y maximum value for screen plot:";: INPUT PMAX

350 PFAC=(PMAX-PMIN)

360 XM=600: YM=400: YM2=YM/2

370 '

380 ' *** Program header ***

147
390 '

400 CLS

410 '

420 PRINT "Cover(l.O)": PRINT""

430 PRINT "This program physically moves the DETECTOR to a user-specified"

440 PRINT "position and counts for a specified time with laser"

450 PRINT "on ion beam on, then counts for an equal time with laser on ion"

460 PRINT "beam off, then counts another period with both off and finally"

470 PRINT "counts with ion beam on and laser off and stores all"

480 PRINT "four counts on to disk."

490 BEEP: PRINT"": PRINT "Hit any key when ready ..."

500 A$=INKEY$: IF A$="" THEN 500

510 '

520 ' *** Poke in machine language routinge ***

530 '

540 PRINT "": PRINT "Loading PC21 & CAMAC I/O drivers ..."

550 '

560 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

570 FOR X = 0! TO 127!

580 INPUT #1,J ' Install machine code

590 POKE X,J

600 NEXT

610 CLOSE #1

620 '

630 ' *** Set all program variables ***

640 '

650 ADDRESS% = 768 ' PC21 base address

660 CONTROL = 96 ' Normal state of PC21 Control Byte

670 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

680 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

690 PC21WRITE = 0! ' Address of PC21WRITE subroutine

700 PC21READ = 49! ' Address of PC21READ subroutine

710 '

720 DAC# = 12 ' DAC module in CAMAC slot #12

730 ' ch#: 0:shutter, l:shutter, 2:ion beam shutter

740 ' 3:notused

750 TIM# = 10 ' TIMER/SCALER module in CAMAC slot #10

760 DELAY1# = 3 ' Delaytime for solenoid shutter in sec.

770 DELAY2# = 3 ' Delaytime for ion beam response in sec.

780 '

790 DATDIRS = "C:\SPUTTER\COVER\" ' Directory for data files

148
800 '

810 CMSG$=" " 'ClearString

820 '

830 FLGOFF = 2.5 ' Offset for 0 degree detector position

840 MAXANG = 110 ' Maximum detector position due to FIBER !!!

850 '

860 '*** PC21 RESET ***

870 '

880 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high

890 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low

900 FOR Y=l TO 500: NEXT ' Wait for BMA

910 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low

920 OUT ADDRESS%+1, (CONTROL OR FAULT) ' Control Bit 5 high

930 '

940 ' *** Load CAMAC drivers and initialize crate ***

950 '

960 BLOAD "C:\BASICDIR\NEW\CAMIO",128 ' Load drivers into data segment

970 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

980 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

990 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot

1000 OUT &H240,0 ' Clear high write-only data register

1010 I%=64: CALL CAMCL(I%) ' Reset crate

1020 I%=1: CALL CAMCL(I%) ' Initialize crate

1030 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 2960 ' Write timer/sealer LAM mask-generate

1040 ' LAM when channel 1 finishes counting

1050 GOSUB 3070: GOSUB 3530

1060 '

1070 ' *** Initialization ***

1080 '

1090 A1%=0:D1%=0: GOSUB 3610 ' Laser beam shutter should be open!

1100 PRINT "Laser beam shutter: OPEN!"

1110 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 2960 ' Ion beam shutter should be open!

1120 PRINT "Ion beam shutter : OPEN!"

1130 '

1140 PRINT "Detector : Moving to 0 degree!"

1150 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2610 ' Moving detector to 0 degree!

1160 POS0=0: POSl=2: GOSUB 2810 ' Make sure not on an endpoint

1170 POS0=0: POS1=-10: GOSUB 2810

1180 IF ENDFLG=0 THEN 1170

1190 POS0=0: POSl=FLGOFF: GOSUB 2810: POS0=0 ' Compensate for offset

1200 '

149
1210 '*** Define data file name ***

1220 '

1230 PRINT""

1240 BEEP: PRINT "Data file name:";: INPUT FILNAMS

1250 ON ERROR GOTO 1340

1260 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists.

1270 ' File exists. Ask user what to do!!

1280 BEEP: BEEP

1290 PRINT "File exists! Continue [y/n]: ? "

1300 V$=INKEY$: IF V$="" THEN GOTO 1300

1310 IF V$="Y" OR V$="y" THEN GOTO 1350 ' Overwrite existing file.

1320 IF V$="N" OR V$="n" THEN GOTO 1240 ' Get a new name for file.

1330 GOTO 1300

1340 RESUME 1350 ' File nonexistent. Proceed.

1350 ON ERROR GOTO 0

1360 CLOSE #1 ' Close temporary input file.

1370 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file.

1380'

1390 ' *»* Print file header ***

1400 '

1410 PRINT #l,"Data stored by COVER1.0 on ";DATE$;" at ";TIME$

1420 PRINT "File header:";: INPUT HDR$

1430 PRINT #l/'File Header = ";HDR$

1440 IF NOT EOF(2) THEN ASMSG$=INPUT$(1,#2): GOTO 1430 'switch to settle.

1450'

1460 ' *** Enter parameter for measurement ***

1470'

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT HTM

1490 IF ITIM<1 THEN ITIM=1

1500 IF ITTM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO 1480: PRINT""

1510 T=ITIM: GOSUB 3360: TSAVE%=TIMEC%

1520 MSG$=" sec integration.": PRINT #1,STR$(T);MSG$

1530 PRINT "Detector angle :";: INPUT ANG0

1540 IF ANG0 > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1530

1550 PRINT #1, "Detector angle : ";ANG0

1560 PRINT "Ion sputter angle :";: INPUT Al

1570 PRINT #1," Ion sputter angle : ";A1

1580 PRINT "Sample Metal:";: INPUT Bl$

1590 PRINT #1, "Sample Metal: ";B1$

1600 PRINT "Sputter Ion : ";:InPUT B2$

1610 PRINT #1, "Sputter Ion : ";B2$

150
1620 PRINT "photomultiplier voltage :";: INPUT A2

1630 PRINT #1," photomultiplier voltage : ";A2

1640 PRINT "ion beam current :";:INPUT A3

1650 PRINT #1, "ion beam current: ";A3

1660 PRINT" Ion beam voltage : ";:INPUT A5

1670 PRINT #1," Ion beam voltage : ";A5

1680 PRINT "NUMBER OF STEPS(EACH STEP=10+(4*integration time):";: INPUT NINC

1690 PRINT "COUNTING AT ";ANG0;" degrees FOR ";CINT(NINC*(10+4*T)/60);" minutes."

1700 PRINT "Moving detector to ";ANG0;" degrees"

1710 POS0=0: POSl=ANG0: GOSUB 2810

1720 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP

1730 BEEP: PRINT "Laser frequency (cmA-l) :";: INPUT NRG#

1740 PRINT #1, "Laser frequency (cmA-l) :"; NRG#

1750 PRINT "laser power (milliwatts) :";: INPUT A4

1760 PRINT #1, "Laser power (milliwatts) :"; A4

1770 PRINT #1," I All on I - I Laser on I - I ion on I + I dark count I = I Total count I"

1780 NRG$=STR$(NRG#): MSG$="GOK"+NRG$+CHR$(13): GOSUB 3830 ' Tell AUTOSCAN to go there.

1790'

1800 ' *** Initialize plotting on the screen ***

1810'

1820 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

1830 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG#

1840 LOCATE 2,50: PRINT FILNAM$

1850 DELX=XM/NINC 'DELX used for plotting

I860'

1870 ' *** Starting the data collection ***

1880 '

1890 DAC0(1)=6540:DAC0(2)=0:DAC0(3)=6540:DAC0(4)=0 ' Settings for DAC

1900DAC2(1)=0:DAC2(2)=0:DAC2(3)=32700:DAC2(4)=32700

1910 TDEL(1)=DELAY1#:TDEL(2)=DELAY1#:TDEL(3)=DELAY1#:TDEL(4)=DELAY1# ' Setting delay after solenoid

and ion beam

1920 LABEL$(1)="A11 off":LABEL$(2)="Laser ON":LABEL$(3)="Ion beam ON":LABEL$(4)="All on"

1930'

1940 ' *** NSP data collection loop ***

1950'

1960 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

1970 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG#

1980 LOCATE 2,50: PRINT FTLNAM$

1990 X0%=0 . 'Initialize x-axis of plot

2000 FOR NSP=1 TO NINC

2010 MSG$="READ"+CHR$(13): GOSUB 3670 ' and verify wavelength.

151
2020 '****

2030 WVMTR#= VAL(MID$(RMSG$,2,10))

2040 DELNRG= WVMTR#-NRG#

2050 '****

2060 IF ABS(DELNRG)>.006 THEN BEEP: BEEP: MSG$="GOK"+STR$(NRG#)+CHR$(13): GOSUB 3670

2070 AVDEL=0

2080 FOR 11=1 TO 3

2090 MSG$="READ"+CHR$(13): GOSUB 3670 ' and verify wavelength.

2100 WVMTR#(II)=VAL(MID$(RMSG$,2,10))

2110 DELNRG=WVMTR#(II)-NRG#

2120 IF ABS(DELNRG)<=.001 THEN GOTO 2190

2130 IF ABS(DELNRG)>.001 THEN AVDEL=AVDEL+DELNRG

2140 NEXT II

2150 AVDEL=AVDEL/3!

2160 MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3670

2170 GOTO 2070

2180'

2190 TIM=TIMER

2200 IF TIMER-TIM<.5 THEN 2200

2210 LOCATE 18,1: PRINT"

2220 LOCATE 18,1: PRINT USING "Angle = #######.###";POS0

2230 '

2240 FOR DACSW=1 TO 4

2250 LOCATE 18,30: PRINT "

2260 LOCATE 18,30: PRINT LABEL$(DACSW)

2270 N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 2960 ' Set DAC on/off depending on

2280 A1%=0:D1%=DAC0(DACSW): GOSUB 3610' Dacsw

2290 T=TDEL(DACSW): GOSUB 3360: GOSUB 3210 ' Wait for time delay!

2300 TIMEC%=TSAVE%: GOSUB 3120 ' now Count for TSAVE%

2310 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

2320 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I

2330 SIG(DACSW)=SIGNAL#/ITIM: GOSUB 3290

2340 NEXT DACSW

2350 '

2360 '***LASERON=LASERON+SIG(l): IONON=IONON+SIG(2): ALLON=ALLON+SIG(3)

2370 ' NEXT NC ' Save signal

2380 ""*DELSIG=ALLON-LASERON-IONON+DRKCNT: PRINT #l,ALLON,LASERON,IONON

2390 DELSIG=SIG(4)-SIG(2)-SIG(3)+SIG(1)

2400 PRINT #1,SIG(4),SIG(2),SIG(3),SIG(1),CINT(DELSIG)

2410 LOCATE 19,1: PRINT."

152
2420 ""LOCATE 19,1: PRINT ALLON;"-";LASERON;"-";IONON;"+";DRKCNT;"=";DELSIG;':LPRINT

POS0,DELSIG

2430 LOCATE 19,1: PRINT NSP;": ";SIG(4);"-";SIG(2);"-";SIG(3);"+";SIG(1);"=";CINT(DELSIG)

2440 YP%=(YM/PFAC)*(pmax-delsig): XP%=(NSP-1)*DELX: IF YP%>YM2 THEN YP%=YM2

2450 DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP%

2460 SIG(1)=0:SIG(2)=0:SIG(3)=0:SIG(4)=0 'Reset accumulated signals for next frequency

2470 '

2480 NEXT NSP

2490'

2500 CLOSE

2510 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Angscanl.O with 'E')"

2520 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2520

2530 END

2540'

2550'

2560 ' *** SUBROUTINES ARE LOCATED HERE !!! ***

2570'

2580 ' *** PC21 WRITE ***

2590'

2600 BFLAG%=0

2610 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1

2620 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1

2630 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1

2640 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

2650 CALL PC21WRITE(COMMAND$, ADDRESS0/») ' Execute machine language write

2660 RETURN

2670'

2680 ' *** PC21 READ ***

2690'

2700 ANSWER$=" "+"" ' Reserve string space for response

2710 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

2720 IF BFLAG%=0 THEN RETURN

2730 NUM#=0: FOR X=l TO 4

2740DIGIT%=ASC(MID$(ANSWER$,X,1))

2750 NUM#=NUM#+DIGIT%*256A(4-X): NEXT

2760 ANSWER$=STRS(NUM#)

2770 RETURN ' BFLAG% identifies binary report commands

2780'

2790 ' *** Move Detector POS1-POS0 degrees (check for end switch) ***

2800'

2810 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-"

153
2820 AVTIM=DEGM5: ENDFLG=0: IF AVTtM<.5 THEN AVTIM=.5

2830 STEPS=INT(DEG*4000/180+.5) ' Convert degrees to motor steps

2840 STEPS$=MID$(STR$(STEPS),2)

2850 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC

2860 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2610 ' Move & signal when done

2870 T0=TIMER

2880 GOSUB 2700: IF LEFT$(ANSWER$/1)=CHR$(13) THEN 2910 ' Keep going till end

2890 T1=TIMER: IF T1-T0<AVTIM THEN 2880 ' If not done after AVTIM,

2900 ENDFLG=1: GOTO 2920 ' End switch must have been hit.

2910 POS0=POS0+DEGAC

2920 RETURN

2930 '

2940 ' *** Main WRITE/READ Subroutines to CAMAC ***

2950'

2960 CALL CAMO(N%,F%,A%,D%,Q%,X%)

2970 RETURN

2980 '

2990 CALL CAMI24(N%,F%,A%,D24%(1),Q%,X%)

3000 RETURN

3010'

3020 CALL CAMI(N%/F%,A%,D%,Q%,X%)

3030 RETURN

3040'

3050 ' »** initialize DAC, put all channels (0...3) to OV! ***

3060 '

3070 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 2960: NEXT

3080 RETURN

3090 '

3100 ' *** Set timer/sealer ***

3110'

3120 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 2960 ' D% must contain time.

3130 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 2960 ' Start counting

3140 CALL CAML(L%):IF L%=0 THEN 3140 ' Wait for count to end

3150 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 2960 ' Clear timer LAM

3160 N%=TTM#:F%=0:A%=1: GOSUB 2990: GOTO 3290 ' Read sealer

3170 RETURN

3180 '

3190 ' *** Wait delay ***

3200 '

3210 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 2960 ' D% must contain time!

3220 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 2960 ' Start wait delay

154
3230 CALL CAML(L%): IF L%=0 THEN 3230 ' Wait for time to end

3240 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 2960: GOTO 3290 ' Clear timer LAM

3250 RETURN

3260 '

3270 ' *** Clear timer/sealer ***

3280 '

3290 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 2960

3300 N%=TIM#:F%=9:A%=1:D%=0: GOSUB 2960

3310 RETURN

3320'

3330 ' *** Subroutine for converting time (T) to a special

3340 ' formatted integer (TIMEC%) used by CAMAC timer. ***

3350'

3360 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0

3370 TBAS=10ATB%: T=T/TBAS: N=0

3380 IF T<2 GOTO 3400

3390 N=N+1: T=T/2: GOTO 3380

3400 J=32*(T-1)+1

3410 IOVF%=N-OVFTBL%(J)

3420 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3370

3430 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3370

3440 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3480

3450 MULT%=MULTBL%0)

3460TA=TBAS*(2*MULT%+l)*2A(IOVF%+4)

3470TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB%

3480 T=TS

3490 RETURN

3500'

3510 ' *** Initialize the solenoid shutter (result: shutter is CLOSED!) ***

3520'

3530 N%=DAC#:F%=16:A%=1:D%=32700: GOSUB 2960

3540 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 2960

3550 N%=DAC#:F%=16:A%=0:D%=0: GOSUB 2960

3560 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 2960

3570 RETURN

3580'

3590 ' *** Open/close solenoid shutter ***

3600'

3610 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 2960

3630 RETURN

3640'

155
3650 ' *** Send Message to Apple via RS232 ***

3660'

3670 LOCATE 20,1: PRINT ">» Remote Apple control:"

3680 LOCATE 21,1: PRINT CMSGS: LOCATE 21,1

3690 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

3700 PRINT MSG$: RMSG$=""

3710 IF EOF(2) THEN 3710

3720 WHILE NOT EOF(2)

3730 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

3740 IF ASMSG$=CHR$(13) GOTO 3790

3750 RMSG$=RMSG$+ASMSG$: WEND

3760 IF ASC(ASMSG$)<>41 THEN GOTO 3710

3770 RETURN

3780'

3790 LOCATE 21,1: PRINT CMSGS;: LOCATE 22,1: PRINT CMSGS;

3800 PRMSG$=RMSG$: RMSG$="": LOCATE 21,1: PRINT PRMSGS;

3810 GOTO 3750

3820'

3830 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

3840 PRINT RMSG$=""

3850 IF EOF(2) THEN 3850

3860 WHILE NOT EOF(2)

3870 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

3880 IF ASMSG$=CHR$(13) THEN RMSG$=""

3890 PRINT ASMSGS;: RMSG$=RMSG$+ASMSG$: WEND

3900 IF ASC(ASMSG$)<>41 THEN GOTO 3850

3910 RETURN

156

DACTEST.BAS

10 CLS:PRINT "This program sets the 4 channel DAC to a specified voltage"

12 PRINT "Paul/Wolfram: 08/17/92": PRINT""

20 PRINT "Now loading PC21 and CAMAC I/O drivers..."

30 GOTO 290 'Load machine language I/O routine

40 GOSUB 70 ' Set all program variables and reset the PC21

50 GOTO 510 ' Initialize crate and run main program

60 ' ****** Set all program variables ******

70 ADDRESS% = 768 ' PC21 base address

80 CONTROL = 96 ' Normal state of PC21 Control Byte

90 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

100 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

110 PC21 WRITE = 0! ' Address of PC21 WRITE subroutine

120 PC21READ = 49! ' Address of PC21READ subroutine

130 ' ****** PC21 RESET ******

140 OUT ADDRESS%+1, (CONTROL OR CRASH) Control Bit 2 high

150 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) Control Bit 2 low

160 FOR Y=l TO 500:NEXT 'wait for BMA

170 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) Control Bit 5 low

180 OUT ADDRESS%+1, (CONTROL OR FAULT) Control Bit 5 high

190 RETURN

200 ' ****** PC21 WRITE ******

210 BFLAG%=0

220 IF INSTR(COMMANDX$,"Wl") OR INSTR(COMMANDX$,"wl") THEN BFLAG%=1

230 IF INSTR(COMMANDX$,"PB") OR INSTR(COMMANDX$,"pb") THEN BFLAG%=1

240 IF INSTR(COMMANDX$/'XlB") OR INSTR(COMMANDX$,"xlb") THEN BFLAG%=1

250 COMMANDXS = COMMANDX$ + CHR$(13) ' Add carriage return to command

260 CALL PC21WRITE(COMMANDX$/ ADDRESS%)' Execute machine language write

270 RETURN

280 ' *** Clear memory and poke in machine language routines ***

290 GOSUB 460 ' Find data segment above BASICA

300 OPEN "CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

310 FOR X = 0! TO 127!

320 INPUT #1,J ' Install machine code

330 POKE X,J

340 NEXT:CLOSE

350 GOTO 40

360 ' ****** PC21 READ ******

370 ANSWER$=" "+ Reserve string space for response

157
380 CALL PC21READ(ANSWERS, ADDRESS0/», BFLAG%)' Execute read

390 IF BFLAG%=0 THEN RETURN

400 NUM#=0:FOR X=l TO 4

410 DIGIT%=ASC(MID$(ANSWER$,X,1))

420 NUM#=NUM#+DIGIT%*256A(4-X):NEXT

430 ANSWER$=STR$(NUM#)

440 RETURN ' BFLAG% identifies binary report commands

450 ' ****** Find data segment above BASICA ******

460 DEF SEG=0 ' Go to low memory to find BASICA Ioc.

470 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

480 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

490 DEF SEG=CAMSEG:RETURN

500 ' ****** Load CAMAC drivers and initialize crate ******

510 BLOAD "CAMIO",128 ' Load drivers into data segment

520 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

530 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

540 CC%=1:CALL CRATE(CC%) ' Activate controller in Jl slot

550 OUT &H240,0 ' Clear high write-only data register

5601%=64:CALL CAMCL(I%) ' Reset crate

5701%=1:CALL CAMCL(I%) ' Initialize crate

580 ' N%=10:F%=17:A%=13:D%=1:GOSUB 630 ' Write timer/sealer LAM mask-generate

590 ' LAM when channel 1 finishes counting

591'

592'

598 ' set all DAC channels to 0V !

599 FOR 1=0 TO 3: N%=12:F%=16:A%=I:D%=0: GOSUB 630: NEXT I

609 PRINT "EXIT program by CTRL BREAK": PRINT""

610 PRINT "DAC channel #:";: INPUT A%: IF (A%>3 OR A%<0) THEN PRINT"": GOTO 610

611 PRINT "DAC voltage :";: INPUT DAC: IF (DAC>5 OR DAC<-5) THEN PRINT "Input out of range": GOTO

611

612 DAC=DAC*1.000: DAC%=INT(DAC*32767/5)

620 PRINT "#: ";A%;" DAC:";: PRINT USING "#.###";DAC: PRINT"": D%=DAC%: GOSUB 630

621 GOTO 610

630 CALL CAMO(N%,F%,A%,D%,Q%,X%): RETURN

640 END

158

DETPOS.BAS

„*»«** Subroutines go here *************

#***** pp91 WRTTF ******

10 REM DETPOS

20 REM Wolfram: 08/20/92 moves detector to a specified position!

21 '

30 GOTO 890 ' Jump over subroutines

31

32

33

40

41

42

50

51

60 BFLAG%=0

70 IF INSTR(COMMANDX$,"Wl") OR INSTR(COMMANDX$/'wl") THEN BFLAG%=1

80 IF INSTR(COMMANDX$,"PB") OR INSTR(COMMANDX$,"pb") THEN BFLAG%=1

90 IF INSTR(COMMANDX$,"XlB") OR INSTR(COMMANDX$,"xlb") THEN BFLAG%=1

100 COMMANDX$=COMMANDX$+CHR$(13) ' Add carriage return to command

110 CALL PC21WRITE(COMMANDX$, ADDRESS%) ' Execute machine language write

120 RETURN

121 '

122 '

130 ' ****** PC21 READ ******

131 '

140 ANSWER$=" "+"" ' Reserve string space for response

150 CALL PC21READ(ANSWERS, ADDRESS0/», BFLAG%) ' Execute read

160 IF BFLAG%=0 THEN RETURN

170 NUM#=0: FOR X=l TO 4

180 DIGIT%=ASC(MID$(ANSWER$,X,1))

190 NUM#=NUM#+DIGIT%*256A(4-X): NEXT

200 ANSWER$=STR$(NUM#)

210 RETURN ' BFLAG% identifies binary report commands

211 '

212 '

220 '******* Move Detector POS1-POS0 degrees (check for end switch) ******

221 '

230 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-"

240 AVTIM=DEG*.15: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5

250 STEPS=INT(DEG*4000/180+.5) ' Convert degrees to motor steps

159
260 STEPS$=MID$(STR$(STEPS)/2)

270 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC

280 COMMANDX$="D"+DIR$+STEPS$+" G CR P": GOSUB 60 ' Move & signal when done

290 T0=TIMER

300 GOSUB 140: EF LEFT$(ANSWER$,1)=CHR$(13) THEN 330 ' Keep going till end

310 T1=TIMER:IFT1-T0<AVTIMTHEN300 'If not done after AVTIM,

320 ENDFLG=1: GOTO 340 'End switch must have been hit.

330 POS0=POS0+DEGAC

340 RETURN

341 '

342 '

870 ' ******** End Subroutines **********

871 '

872 '

880 ' ****** Find data segment above BASICA and do initial settings ******

881 '

890 CLEAR: CLS ' Set all variables to "0"

891 '

900 DEFSEG=0 ' Go to low memory to find BASICA loc.

910 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

920 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

930 DEF SEG=CAMSEG

931 '

951 '

1120 PRINT: PRINT "DETPOS: Moving the detector to a specified position"

1130 PRINT: PRINT "Now loading PC21 I/O drivers ..."

1131'

1140 ' *** Poke in machine language routinge ***

1150 OPEN "CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

1160 FOR X = 0! TO 127!

1170 INPUT #1,J ' Install machine code

1180 POKEXJ

1190 NEXT

1200 CLOSE #1

1201'

1202'

1210' ****** Set all program variables ******

1211'

1220 ADDRESS% = 768 ' PC21 base address

1230 CONTROL = 96 ' Normal state of PC21 Control Byte

1240 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

160
1250 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

1260 PC21 WRITE = 0! ' Address of PC21WRITE subroutine

1270 PC21READ = 49! ' Address of PC21READ subroutine

1271'

1275 FLGOFF = 2.5 ' Offset for 0 degree detector position!

1276 MaxAng = 110 ' Maximum detector position due to FIBER !!!

1277'

1300 ' ****** PC21 RESET ******

1301'

1310 OUT ADDRESS%+1, (CONTROL OR CRASH) 'Control Bit 2 high

1320 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) Control Bit 2 low

1330 FOR Y=l TO 500: NEXT 'wait for BMA

1340 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) Control Bit 5 low

1350 OUT ADDRESS%+1, (CONTROL OR FAULT) 'Control Bit 5 high

1351'

1450 ' ****** Program Begins Here *******

1451'

1460 ' >» Initialization <«

1461'

1490 ' ****** Send Detector to HOME position *******

1491 '

1500 PRINT "Moving detector to HOME position!"

1510 COMMANDX$="FSBl FSC1 MN Al V.l": GOSUB 60 'Moving detector to 0 degree!

1520 POS0=0: POSl=2: GOSUB 230 'Make sure not on an endpoint

1530 POS0=0: POS1=-10: GOSUB 230

1540 IF ENDFLG=0 THEN 1530

1550 POS0=0: POSl=FLGOFF: GOSUB 230: POS0=0 'compensate for offset

1551'

1781'

1790 ' >» Enter parameter for measurement <«

1791'

1870 ANG0=0

1880 PRINT"": PRINT "Desired detector position :";: INPUT ANG1

1890 IF ANG1 > MaxAng THEN PRINT "Position out of limit!!!": GOTO 1880

1930 PRINT "Moving detector to ";ANG1;" degree"

1940 POS0=ANG0: POSl=ANGl: GOSUB 230

1950 IF ENDFLGoO THEN PRINT "ERROR! Limit switch hit!": STOP

1970 ANG0=ANG1: GOTO 1880

1980 POS0=ANG0: POSl=ANGl: GOSUB 230

2612'

2620 CLOSE

161
2630 END

162

FREQSCAN.BAS

10 REM FREQSCANV1.0,(MOD2CNT) modified 8/13/90 to increase DELAY(3) (TW)

20 REM Graphic boundaries and flag offset are set at 910-920 (TW)

30 REM modified 08/20/92: solenoid operation, waitdelay (WM)

40 REM 08/27/92: program structure (WM)

50 REM 04/30/93: changed check for frequency (WM)

60 REM files needed : hbasic.exe, basica.com, code.bas, camio.bas

70 '

80 ' *** Find data segment above BASICA ***

90 '

100 CLEAR: CLS ' Set all variables to "0"

110 DEFSEG=0 ' Go to low memory to find BASICA loc.

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

140 DEF SEG=CAMSEG

150 '

160 ' *** Open COM channel to Apple Comp. ***

170 '

180 OPEN "COM1:9600,N,8,1,CS3000,DS3000" AS #2

190 '

200 ' *** Dimension of variables ***

210 '

220 DIMOVFTBL%(32),MULTBL%(32),DAC0(3),DACl(3),DAC2(3),DELAY(3),SIG(3)

230 DIM WVMTR#(3),D24%(2),LABEL$(3)

240 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9

250 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27

260 DATA 3,28,14,29,7,30,15,31

270 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT 'Load in tables for conversion of

280 FOR 1=1 TO 32: READ MULTBL%(I): NEXT 'time.

290 '

300 ' *** Setting parameters ***

310 '

320 PMIN=-50: PMAX=5000

330 PFAC=(PMAX-PMIN)*2

340 XM=600: YM=400: YM2=YM/2 'XM=719: YM=347: YM2=YM/2

350 '

360 ' *** Program header ***

370 '

380 CLS:

163
390 '

400 PRINT "FREQSCAN (1.0)": PRINT""

410 PRINT "This program counts number of photons for a user-specified time as"

420 PRINT "a function of the LASER FREQUENCY with the ion beam on hitting the"

430 PRINT "target and the laser beam off, then counts for an equal time with"

440 PRINT "the ion beam off and the laser beam on and then again with ion beam"

450 PRINT "and laser beam on and stores all three counts on to disk."

460 BEEP: PRINT"": PRINT "Hit any key when ready ..."

470 A$=INKEY$: IF A$="" THEN 470

480 '

490 ' *** Poke in machine language routinge ***

500 '

510 PRINT"": PRINT "Loading PC21 & CAMAC I/O drivers ..."

520 '

530 OPEN "C: \ BASICDIRX NEW\ CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

540 FOR X = 0! TO 127!

550 INPUT #1, J ' Install machine code

560 POKEXJ

570 NEXT

580 CLOSE #1

590 '

600 ' *** Set all program variables ***

610 '

620 ADDRESS% = 768 ' PC21 base address

630 CONTROL = 96 ' Normal state of PC21 Control Byte

640 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

650 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

660 PC21WRITE = 0! ' Address of PC21 WRITE subroutine

670 PC21READ = 49! ' Address of PC21READ subroutine

680 '

690 DAC# = 12 ' DAC module in CAMAC slot #12

700 ' ch#: 0:shutter, l:shutter, 2:ion beam shutter

710 ' 3:notused

720 TTM# = 10 ' TIMER/SCALER module in CAMAC slot #10

730 DELAY1# = 1 ' Delaytime for solenoid shutter in sec.

740 DELAY2# = 1 ' Delaytime for ion beam response in sec.

750 '

760 DATDIR$ = "C:\SPUTTER\FREQDAT\" ' Directory for data files

770 '

780 CMSG$=" " 'ClearString

790 '

164
800 FLGOFF = 2.5 ' Offset for 0 degree position

810 MAXANG = 110 ' Maximum position of detector due to FIBER!!!

820 '

830 ' *** PC21 RESET ***

840 '

850 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high

860 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low

870 FOR Y=l TO 500: NEXT ' Wait for BMA

880 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low

890 OUT ADDRESS%+1, (CONTROL OR FAULT) ' Control Bit 5 high

900 '

910 ' *** Load CAMAC drivers and initialize crate ***

920 '

930 BLOAD "C:\BASICDIR\NEW\CAMIO",128 ' Load drivers into data segment

940 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

950 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

960 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot

970 OUT&H240,0 ' Clear high write-only data register

980 I%=64: CALL CAMCL(I%) ' Reset crate

990 I%=1: CALL CAMCL(I%) ' Initialize crate

1000 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 3300 ' Write timer/sealer LAM mask-generate

1010 ' LAM when channel 1 finishes counting

1020 GOSUB3410

1030 '

1040 ' *** Initialization ***

1050 '

1060 A1%=0:D1%=6540: GOSUB 3870 ' Laser beam shutter should be closed!

1070 PRINT "Laser beam shutter: CLOSED!"

1080 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 3300 ' Ion beam shutter should be open!

1090 PRINT "Ion beam shutter : OPEN!"

1100 '

1110 PRINT "Detector : Moving to 0 degree!"

1120 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2950 ' Moving detector to 0 degree!

1130 POS0=0: POSl=2: GOSUB 3150 ' Make sure not on an endpoint

1140 POS0=0: POS1=-10: GOSUB 3150

1150 IF ENDFLG=0 THEN 1140

1160 POS0=0: POSl=FLGOFF: GOSUB 3150: POS0=0 ' Compensate for offset

1170 '

1180 ' *** Define data file name ***

1190 '

1200 PRINT""

165
1210 BEEP: PRINT "Data file name:";: INPUT FILNAM$

1220 ON ERROR GOTO 1310

1230 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists.

1240 ' File exists. Ask user what to do!!

1250 BEEP: BEEP

1260 PRINT "File exists! Continue [y/n]: ? "

1270 V$=INKEY$: IF V$="" THEN GOTO 1270

1280 IF V$="Y" OR V$="y" THEN GOTO 1320 ' Overwrite existing file.

1290 IF V$="N" OR V$="n" THEN GOTO 1210 ' Get a new name for file.

1300 GOTO 1270

1310 RESUME 1320 ' File nonexistent. Proceed.

1320 ON ERROR GOTO 0

1330 CLOSE #1 ' Close temporary input file.

1340 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file.

1350'

1360 ' *** Print file header *»*

1370'

1380 PRINT #l,"Data stored by FREQSCAN1.0 on ";DATE$;" at ";TTME$; ". Format is"

1390 PRINT #1," I Header$ I

1400 PRINT #1," I #Sec/point-#Spec-E(start)-E(width)-#Steps-E/step-DetPos-DarkCnt I"

1410 PRINT #l,"Data - #Spec * #Steps * I All on-Laser on-Ion beam on I": PRINT #1,

1430 PRINT "File header:";: INPUT HDR$

1440 PRINT #1,HDR$

1450'

1460 ' *** Enter parameter for measurement ***

1470'

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT ITIM

1490 IF ITIM<1 THEN ITIM=1

1500 IF rnM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO 1480: PRINT""

1510 T=ITIM: GOSUB 3700: TSAVE%=TIMEC%

1520 MSG$=" sec integration.": PRINT #1,STR$(T);

1530 PRINT "Enter # spectra (1-100) :";: INPUT NSPEC%

1540 IF NSPEC%<1 OR NSPEC%>100 THEN 1530

1550 PRINT #1,NSPEC%;

1560 PRINT "Detector position :";: INPUT ANG

1570 IF ANG > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1560

1580 PRINT "Starting energy (cmA-l) :";: INPUT ESTART$

1590 NRG#=VAL(ESTART$)' NRG# is the laser energy

1600 MSG$="GOK"+ESTART$+CHR$(13): GOSUB 4080: PRINT Tell AUTOSCAN to go there

1610 PRINT "Enter # of cmA-l to scan :";: INPUT SCAN

1620 SCAN$=STR$(SCAN)

166
1630 PRINT "Enter increments in MHz :";: INPUT INC

1640 INC=INC/30000: INC$=STR$(INC) ' Convert INC into cmA-l

1650 NINC=INT((SCAN/INC)+.5) ' NINC is total # of incremental steps to scan

1660 PRINT #1,ESTART$;SCAN$;NINC+1;INC,ANG;

1670 PRINT "Moving detector to ";ANG;" degree."

1680 POS0=0: POSl=ANG: GOSUB 3150

1690 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP

1700 '

1710 ' *** Initialize plotting on the screen ***

1720'

1730 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

1740 LOCATE 15,1: PRINT ESTART$: LOCATE 16,1: PRINT ANG

1750 LOCATE 2,50: PRINT FILNAM$

1760 DELX=XM/NINC 'DELX used for plotting

1770'

1780 ' *** Starting the data collection ***

1790'

1800 DAC0(1)=0:DAC0(2)=6540:DAC0(3)=0 ' Settings for DAC

1810DAC2(1)=0:DAC2(2)=32700:DAC2(3)=32700

1820 TDEL(1)=DELAY2#:TDEL(2)=DELAY2#:TDEL(3)=DELAY1# ' Setting delay after solenoid and ion beam

1830 LABEL$(l)="Laser beam ON":LABEL$(2)="Ion beam ON":LABEL$(3)="All ON"

1840'

1850 LOCATE 18,30: PRINT "Collecting dark counts for 5 sec!"

1860 N%=DAC#:F%=16:A%=2:D%=0: GOSUB 3300 ' Ion beam shutter CLOSED!

1870 A1%=0:D1%=6540: GOSUB 3870 ' Solenoid shutter CLOSED!

1880 T=DELAY2#: GOSUB 3700: GOSUB 3550 ' Time delay after solenoid operation!

1890 T=5: GOSUB 3700: GOSUB 3460 ' 5 sec dark count collection!

1900 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNALS = SIGNAL» +32768*

1910 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL# +65536#: NEXT I

1920 DRKCNT=cint(SIGNAL#/5): GOSUB 3630: PRINT #1,DRKCNT

1930 LOCATE 17,1: PRINT DRKCNT

1940 LOCATE 18,30: PRINT"

1950'

1960 ' *** NSP data collection loop ***

1970'

1980 NLASINC=0

1990 FOR NSP=1 TO NSPEC% ' Start scans

2000 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;"

2010 LOCATE 15,1: PRINT ESTART$: LOCATE 16,1: PRINT ANG

2020 LOCATE 2,50: PRINT FILNAM$

2030 ' LOCATE 2,3: PRINT "spec#";NSP

167
2040 '****

2050 X0%=0 ' Initialize x-axis of plot

2060 IF NSP= 1 GOTO 2270 ' If not first scan

2070 MSG$= "DELK-"+SCAN$+CHR$(13): GOSUB 3920 ' then must reset laser,

2080 NRG#= VAL(ESTARTS) ' reset energy variable,

2090 MSG$= "READ"+CHR$(13): GOSUB 3920 ' and verify wavelength.

2100 WVMTR#= VAL(MID$(RMSG$,2,10))

2110 DELNRG= WVMTR#-NRG#

2120 IF ABS(DELNRG)>.006 THEN BEEP: MSG$= "GOK"+STR$(NRG#)+CHR$(13): GOSUB 3920

2130 AVDEL=0

2140 FOR 11=1 TO 3

2150 MSG$= "READ"+CHR$(13): GOSUB 3920

2160 WVMTR#= VAL(MID$(RMSG$,2,10)): PRINT WVMTR#

2170 DELNRG= WVMTR#-NRG#: PRINT DELNRG

2180 IF ABS(DELNRG)<=.001 THEN GOTO 2260

2190 IF ABS(DELNRG)>.001 THEN AVDEL= AVDEL+DELNRG

2200 NEXT II

2210 AVDEL= AVDEL/3!: PRINT AVDEL

2220 MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3920

2230 GOTO 2140

2240 '****

2250 '

2260 SUM=0:CNT=0

2270 FOR INCCNT=0 TO NINC ' Begin loop incrementing angle.

2280 LOCATE 2,3: PRINT "spec#";NSP

2290 IF INCCNT=0 THEN GOTO 2490 ' Don't need increment 1st time.

2300 MSG$="DELK"+INC$+CHR$(13): GOSUB 3920: NRG#=NRG#+INC ' Tell AUTOSCAN

2310 ' to increment frequency, update NRG

2320 NLASINC=NLASINC+1: IF NLASINC<10 THEN GOTO 2540 ' After 10 increments

2330 '****

2340 NLASINC=0: MSG$="READ"+CHR$(13): GOSUB 3920 ' check wavemeter to

2350 WVMTR#=VAL(MID$(RMSG$,2,10))

2360 DELNRG=WVMTR#-NRG#

2370 IF ABS(DELNRG)>.006 THEN BEEP: MSG$="GOK"+STR$(NRG#)+CHR$(13): GOSUB 3920

2380 AVDEL= 0

2390 FOR 11=1 TO 3

2400 MSG$= "READ"+CHR$(13): GOSUB 3920

2410 WVMTR#=VAL(MID$(RMSG$,2,10))

2420 DELNRG= WVMTR#-NRG#

2430 IF ABS(DELNRG)<=.001 THEN GOTO 2500

2440 IF ABS(DELNRG)>.001 THEN AVDEL=AVDEL+DELNRG

168
2450 NEXT II

2460 AVDEL=AVDEL/3!: PRINT AVDEL

2470 MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3920

2480 GOTO 2380

2490 ""**

2500 LOCATE 18,1: PRINT "

2510 LOCATE 18,1: PRINT USING "Energy = #######.###";NRG#

2520 '

2530 CNT=0: SUM=0

2540 FOR DACSW=1 TO 3

2550 LOCATE 18,30: PRINT"

2560 LOCATE 18,30: PRINT LABEL$(DACSW)

2570 N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 3300 ' Set DAC on/off depending on

2580 A1%=0:D1%=DAC0(DACSW): GOSUB 3870 ' Dacsw

2590 LOCATE 18,1: PRINT"

2600 LOCATE 18,1: PRINT USING "Energy = #######.###";NRG#

2610 T=TDEL(DACSW): GOSUB 3700: GOSUB 3550 ' Wait for time delay!

2620 TIMEC%=TSAVE%: GOSUB 3460 ' now Count for TSAVE%

2630 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768#

2640 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I

2650 SIG(DACSW)=SIGNAL#/ITIM : GOSUB 3630

2660 NEXT DACSW

2670 '

2680 '***LASERON=LASERON+SIG(l): IONON=IONON+SIG(2): ALLON=ALLON+SIG(3)

2690 ' NEXT NC ' Save signal

2700 '*"DELSIG=ALLON-LASERON-IONON+DRKCNT: PRINT #l,ALLON,LASERON,IONON

2710 DELSIG=SIG(3)-SIG(1)-SIG(2)+DRKCNT: PRINT #1, SIG(3),SIG(1),SIG(2),DELSIG

2720 LOCATE 19,1: PRINT "

2730 '»"LOCATE 19,1: PRINT ALLON;"-";LASERON;"-";IONON;"+";DRKCNT;"=";DELSIG;':LPRINT

POS0,DELSIG

2740 LOCATE 19,1: PRINT INCCNT;": ";SIG(3);"-";SIG(1);"-";SIG(2);"+";DRKCNT;"=";DELSIG;':LPRINT

POS0,DELSIG

2750 YP%=(YM/PFAC)*(PMAX-(DELSIG)/ITTM): XP%=INCCNFDELX: IF YP%>YM2 THEN YP%=YM2

2760 DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP%

2770 SIG(1)=0: SIG(2)=0: SIG(3)=0 'Reset accumulated signals for next frequency

2780 NEXT INCCNT

2790 '

2800 BEEP

2810 PRINT #l,"xxxx"

2820 NEXT NSP

2830'

169
2840 CLOSE

2850 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Freqscanl.O with 'E')"

2860 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2860

2870 END

2880 '

2890'

2900 ' *** SUBROUTINES ARE LOCATED HERE !!! "*

2910'

2920 ' *** PC21 WRITE ***

2930'

2940 BFLAG%=0

2950 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1

2960 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1

2970 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$/'xlb") THEN BFLAG%=1

2980 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

2990 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write

3000 RETURN

3010'

3020 ' *** PC21 READ ***

3030'

3040 ANSWER$=" "+"" ' Reserve string space for response

3050 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

3060 IF BFLAG%=0 THEN RETURN

3070 NUM#=0: FOR X=l TO 4

3080DIGIT%=ASC(MID$(ANSWER$,X,1))

3090 NUM#=NUM#+DIGIT%*256A(4-X): NEXT

3100 ANSWERS=STR$(NUM#)

3110 RETURN ' BFLAG% identifies binary report commands

3120'

3130 ' *** Move Detector POS1-POS0 degrees (check for end switch) ***

3140 '

3150 DEG=ABS(POSl-POS0): DIRS="+": IF POSl-POS0<0 THEN DIR$="-"

3160 AVTIM=DEG*.15: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5

3170 STEPS=INT(DEG*4000/180+.5) * Convert degrees to motor steps

3180 STEPS$=MID$(STR$(STEPS),2)

3190 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC

3200 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2950 ' Move & signal when done

3210 T0=TTMER

3220 GOSUB 3040: IF LEFT$(ANSWER$,1)=CHR$(13) THEN 3250 ' Keep going till end

3230 T1=TIMER: IF T1-T0<AVTIM THEN 3220 ' If not done after AVTTM,

3240 ENDFLG=1: GOTO 3260 ' End switch must have been hit.

170
3250 POS0=POS0+DEGAC

3260 RETURN

3270'

3280 ' ** * Main WRITE /READ Subroutines to C AMAC ***

3290 '

3300 CALL CAMO(N%/F%,A%,D7o,Q%/X%)

3310 RETURN

3320'

3330 CALL CAMI24(N%,F%,A%,D24%(1)/Q%,X%)

3340 RETURN

3350'

3360 CALL CAMI(N%/F%/A%,D%/Q%,X%)

3370 RETURN

3380'

3390 ' *** initialize DAC, put all channels (0...3) to OV! ***

3400 '

3410 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 3300: NEXT

3420 RETURN

3430 '

3440 ' "* Set timer/sealer ***

3450'

3460 N%=TIM#:F%=17:Ao/o=0:D%=TIMEC%: GOSUB 3300 ' D% must contain time.

3470 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3300 ' Start counting

3480 CALL CAML(L%):IF L%=0 THEN 3480 ' Wait for count to end

3490 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3300 ' Clear timer LAM

3500 N%=TIM#:F%=0: A%=1: GOSUB 3330: GOTO 3630 ' Read sealer

3510 RETURN

3520'

3530 ' *** Wait delay ***

3540'

3550 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 3300 ' D% must contain time!

3560 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3300 ' Start wait delay

3570 CALL CAML(L%): IF L%=0 THEN 3570 ' Wait for time to end

3580 N%=TTM#:F%=23:A%=12:D%=1: GOSUB 3300: GOTO 3630 ' Clear timer LAM

3590 RETURN

3600 '

3610 ' *** Clear timer/sealer ***

3620 '

3630 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 3300

3640 N%=TTM#:F%=9:A%=1:D%=0: GOSUB 3300

3650 RETURN

171
3660'

3670 ' *** Subroutine for converting time (T) to a special

3680 ' formatted integer (TTMEC%) used by CAMAC timer. *'*

3690'

3700 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0

3710 TBAS=10ATB%: T=T/TBAS: N=0

3720 IF T<2 GOTO 3740

3730 N=N+1: T=T/2: GOTO 3720

3740 J=32*(T-1)+1

3750 IOVF%=N-OVFTBL%(J)

3760 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3710

3770 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3710

3780 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3820

3790 MULT%=MULTBL%0)

3800TA=TBAS*(2*MULT%+l)*2A(IOVF%+4)

3810TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB%

3820 T=TS

3830 RETURN

3840'

3850 ' *** Open/close solenoid shutter ***

3860'

3870 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 3300

3880 RETURN

3890'

3900 ' *** Send Message to Apple via RS232 ***

3910'

3920 LOCATE 20,1: PRINT ">» Remote Apple control:"

3930 LOCATE 21,1: PRINT CMSG$: LOCATE 21,1

3940 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

3950 PRINT MSG$: RMSG$=""

3960 IF EOF(2) THEN 3960

3970 WHILE NOT EOF(2)

3980 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

3990 IF ASMSG$=CHR$(13) GOTO 4040

4000 RMSG$=RMSG$+ASMSG$: WEND

4010 IF ASC(ASMSG$)<>41 THEN GOTO 3960

4020 RETURN

4030'

4040 LOCATE 22,1: PRINT CMSG$;

4050 PRMSG$=RMSG$: RMSG$="": LOCATE 22,1: PRINT PRMSG$;

4060 GOTO 4000

172
4070'

4080 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT

4090 PRINT RMSG$=""

4100 IF EOF(2) THEN 4100

4110 WHILE NOT EOF(2)

4120 ASMSG$=INPUT$(l/#2): ASMSG$=CHR$(ASC(ASMSG$)-128)

4130 IF ASMSG$=CHR$(13) THEN RMSG$=""

4140 PRINT ASMSG$;: RMSG$=RMSG$+ASMSG$: WEND

4150 IF ASC(ASMSG$)<>41 THEN GOTO 4100

4160 RETURN

173

MASPLOT.BAS

10 REM MASPLOT: plotting of mass spectra

11 REM V1.0:02/04/93

13 REM files needed : hbasic.exe, basica.com, code.bas, camio.bas

14 '

15 REM Program structure from MASSPEC.BAS !!!

16 '

100 ' ****** Find data segment above BASICA ******

101 '

110 CLEAR: CLS ' Set all variables to "0"

120 DEFSEG=0 ' Go to low memory to find BASICA loc.

130 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

140 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

150 DEF SEG=CAMSEG

151 '

200 ' *** Dimension of variables ***

201 '

210 DIM XVal(1000),YVal(1000)

211 '

280 ' *** Setting parameters ***

281 '

290 XPix=600: YPix=250: YNeg=-0.1: YPos=3.5: YScale=1.0

300 YFac=YPix/(1.0*(-YNeg+YPos)) ' YFac for y-axis

301 '

320 ' *** Program header ***

321 '

340 PRINT "MASPLOT (1.0)": PRINT""

350 PRINT "This program is plotting mass spec"

351 '

400 ' *** Poke in machine language routinge ***

401 '

410 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

420 FOR X = 0! TO 127!

430 INPUT #1, J ' Install machine code

440 POKE XJ

450 NEXT

460 CLOSE«

461 '

500 ' *** Set all program variables ***

174

' PC21 base address

' Normal state of PC21 Control Byte

' Mask for Control Bit 2 (BMA time-out)

' Mask for C.B. 5 (restart BMA)

' Address of PC21WRITE subroutine

' Address of PC21READ subroutine

' ADC module in CAMAC slot #9

' DAC module in CAMAC slot #12

ch#0,l,2:+/-5V

3: + 10V (scan mass spec)

' TIMER/SCALER module in CAMAC slot #10

' Delaytime for DAC respnse in sec.

501 '

510 ADDRESS% = 768

520 CONTROL = 96

530 CRASH = 4

540 FAULT = 32

550 PC21WRITE = 0!

560 PC21READ = 49!

561 '

570 ADC#=9

580 DAC# = 12

581 '

582 '

590 TIM# = 10

600 DELAY* = 0.025

601 '

610 DATDIRS = "C:\MASSDATV ' Directory for data files

615 '

620 UMassFac = 0.0333 ' Conversion factor mass -> DAC voltage

630 NADC = 2 '# of measurements done by ADC

631 '

1000 ' *** Open data file ***

1001'

1020 PRINT""

1030 BEEP: PRINT "Data file name:";: INPUT FILNAM$

1040 ON ERROR GOTO 1070

1050 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists.

1051' File exists. Ask user what to do!!

1055 GOTO 1140

1060 BEEP: BEEP

1070 PRINT "File does'nt exists!": GOTO 1030

1080 'WV$=INKEY$: IF V$="" THEN GOTO 1080

1090 ,***IF V$="Y" OR V$="y" THEN GOTO 1130 ' Overwrite existing file.

1100 '***IF V$="N" OR V$="n" THEN GOTO 1030 ' Get a new name for file.

1110 ""»GOTO 1080

1120 RESUME 1130 ' File nonexistent. Proceed.

1130 ON ERROR GOTO 0

1140 '"'CLOSE #1 ' Close temporary input file.

1150 ""'OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Open output file.

1151'

1200 ' *** Enter parameter for measurement ***

1201'

175
1210 BEEP: PRINT"": PRINT "YScale:";: INPUT YScale

1271'

1300 ' *** Read data ***

1301'

1310 FOR i=l TO 3 : LINE INPUT #1, A$: NEXT i ' Skip first 3 lines!

1320 INPUT #1, IntNum

1330 FOR i=l TO IntNum:

1340 INPUT #1, XVal(i),YVal(i)

1345'*" PRINT XVal(i); YVal(i)

1350 NEXT i

1351'

1400 ' *** Initialize plotting ***

1401'

1410 CLS: SCREEN 2: DRAW "BM0,0 R=XPix;D=YPix;L=XPix;U=YPix;"

1420 '*** LOCATE 20,1: PRINT LowMass: LOCATE 21,1: PRINT HighMass

1430 LOCATE 2,50: PRINT FILNAM$

1434 DifMass=XVal(IntNum)-XVal(l)

1435 XFac=XPix/(1.0*DifMass) ' XFac for x-axis

1440 X0%=0.0

1445 '

1700 ' *** Plotting data ***

1701'

1705 X0%=0.0

1706 '

1710 FOR ii=l TO IntNum

1711'

1720 DRAW "BM=X0%;,=Y0%;"

1730 YP%=YPix-(YVal(ii)-YNeg)*YFac*YScale: XP%=(XVal(ii)-XVal(l))*XFac

1740 IF YVal(ii)>YPos THEN YP%=0

1750 IF YVal(ii)<YNeg THEN YP%=YPix

1760 Y0%=YP%

1770 DRAW "M=X0%;,=Y0%;": DRAW "M=X0%;,=YP%;": DRAW "M=XP%;,=YP%;": X0%=XP%

1771'

1780 NEXT ii

1781'

1790 LOCATE 22,1: PRINT"

1800 PRINT "Rescale Plot:";: INPUT YScale

1810 IF YScale > 1.0 THEN GOTO 1705

1820 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT MasPlotl.O with 'E')"

1830 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 1830

1831'

176
1900 CLOSE ' Close OutputFile

1901'

1910 END

1911'

1912'

3000 ' *** SUBROUTINES ARE LOCATED HERE !!! ***

3001'

3010 ' *** PC21 WRITE ***

3011"

3020 BFLAG%=0

3030 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1

3040 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1

3050 IF INSTR(COMMAND$/'XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1

3060 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

3070 CALL PC21WRITE(COMMAND$/ ADDRESS%) ' Execute machine language write

3080 RETURN

3081'

3100 ' *** PC21 READ ***

3101'

3110 ANSWER$=" "+ Reserve string space for response

3120 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

3130 IF BFLAG%=0 THEN RETURN

3140 NUM#=0: FOR X=l TO 4

3150DIGIT%=ASC(MID$(ANSWER$,X,1))

3160 NUM#=NUM#+DIGIT%*256A(4-X): NEXT

3170 ANSWER$=STR$(NUM#)

3180 RETURN ' BFLAG% identifies binary report commands

3181'

177

MASSPEC.BAS

10 REM MASSPEC: recording of mass spectra

11 REM V1.0: 02/04/93

13 REM files needed : hbasic.exe, basica.com, code.bas, camio.bas

14 '

15 REM Program structure from ANGSCAN.BAS !!!

16 '

100 ' ****** Find data segment above BASICA ******

101 '

110 CLEAR: CLS ' Set all variables to "0"

120 DEFSEG=0 ' Go to low memory to find BASICA loc.

130 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511

140 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA

150 DEF SEG=CAMSEG

151 '

200 ' *** Dimension of variables ***

201 '

210 DIM YVal(1000)

211 '

280 ' *** Setting parameters ***

281 '

290 XPix=600: YPix=250: YNeg=-0.1: YPos=3.5: YScale=1.0

300 YFac=YPix/(1.0*(-YNeg+YPos)) ' YFac for y-axis

301 '

320 ' *** Program header ***

321 '

340 PRINT "MASSPEC (1.0)": PRINT""

350 PRINT "This program is taking mass spec"

351 '

400 ' *** Poke in machine language routinge ***

401 '

410 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1 ' Access machine code data file

420 FOR X = 0! TO 127!

430 INPUT #1,J ' Install machine code

440 POKE X,J

450 NEXT

460 CLOSE #1

461 '

500 ' *** Set all program variables ***

178
501 '

510 ADDRESS% = 768 ' PC21 base address

520 CONTROL = 96 ' Normal state of PC21 Control Byte

530 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out)

540 FAULT = 32 ' Mask for C.B. 5 (restart BMA)

550 PC21WRITE = 0! ' Address of PC21WRITE subroutine

560 PC21READ = 49! ' Address of PC21READ subroutine

561 '

570 ADC#= 9 ' ADC module in CAMAC slot #9

580 DAC# = 12 ' DAC module in CAMAC slot #12

581 ' ch#0,l,2: +/- 5V

582 ' 3: + 10V (scan mass spec)

590 TIM# = 10 ' TIMER/SCALER module in CAMAC slot #10

600 DELAY* = 0.025 ' Delaytime for DAC respnse in sec.

601 '

610 DATDIR$ = "C:\MASSDAT\" ' Directory for data files

615 '

620 UMassFac = 0.0333 ' Conversion factor mass —> DAC voltage

630 NADC = 2 '# of measurements done by ADC

631 '

700 ' *** PC21 RESET ***

701 '

710 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high

720 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low

730 FOR Y=l TO 500: NEXT ' Wait for BMA

740 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low

750 OUT ADDRESS%+1, (CONTROL OR FAULT) ' Control Bit 5 high

751 '

800 ' *** Load CAMAC drivers and initialize crate ***

801 '

810 BLOAD "C:\BASICDIR\NEW\CAMIO",128 ' Load drivers into data segment

820 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses

830 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses

840 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot

850 OUT &H240,0 ' Clear high write-only data register

860 I%=64: CALL CAMCL(I%) ' Reset crate

870 I%=1: CALL CAMCL(I%) ' Initialize crate

871 '

1000 ' *** Initialization ***

1001'

1010 N%=DAC#:F%=16:A%=3:D%=-32767: GOSUB 3410 ' Mass spec set to 0 amu

179
1011'

1100 ' *** Define data file name ***

1101'

1020 PRINT""

1030 BEEP: PRINT "Data file name:";: INPUT FILNAMS

1040 ON ERROR GOTO 1120

1050 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists.

1051' File exists. Ask user what to do!!

1060 BEEP: BEEP

1070 PRINT "File exists! Continue [y/n]: ? "

1080 V$=INKEY$: IF V$="" THEN GOTO 1080

1090 IF V$="Y" OR V$="y" THEN GOTO 1130 ' Overwrite existing file.

1100 IF V$="N" OR V$="n" THEN GOTO 1030 ' Get a new name for file.

1110 GOTO 1080

1120 RESUME 1130 ' File nonexistent. Proceed.

1130 ON ERROR GOTO 0

1140 CLOSE #1 ' Close temporary input file.

1150 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file.

1151'

1200 ' *** Enter parameter for measurement ***

1201 '

1210 BEEP: PRINT"": PRINT "Low Mass:";: INPUT LowMass

1220 PRINT "High Mass:";: INPUT HighMass

1230 DifMass=HighMass-LowMass

1240 PRINT "# of Intervals:";: INPUT IntNum

1250 DelMass=DifMass/(1.0*IntNum)

1260 PRINT "# of Scans per Mass:";: INPUT NumScan

1270 PRINT "Comment:";: INPUT HDR$

1271'

1300 ' *** Print file header ***

1301'

1310 PRINT #1, "Data stored by MasSpecl.O on ";DATE$;" at ";TIME$

1320 PRINT«, HDR$

1330 PRINT #1," I Mass Signal I"

1335 PRINT #l,NumInt

1331'

1400 ' *** Initialize plotting/DAC ***

1401'

1410 CLS: SCREEN 2: DRAW "BM0,0 R=XPix;D=YPix;L=XPix;U=YPix;"

1420 LOCATE 20,1: PRINT LowMass: LOCATE 21,1: PRINT HighMass

1430 LOCATE 2,50: PRINT FILNAM$

180
1435 XFac=XPix/(1.0*DifMass) ' XFac for x-axis

1440 X0%=0.0

1445'

1550 ' *** Data collection loop ***

1551'

1570 FOR Nlnt=0 TO IntNum ' Start scans

1571'

1580 Mass = LowMass + NInt*DelMass

1590 URamp = Mass * UMassFac: GOSUB 3540 ' GoSub SetDAC

1610 TAverage=0.0

1611'

1620 FOR NScan=l TO NumScan ' ADC loop

1621'

1630 GOSUB 4110: Sig= ADC * GoSub ADCloop: get Signal from ADC

1640 TAverage = TAverage + Sig

1650 Signal = TAverage/(1.0*NumScan)

1660 YVal(NInt) = Signal

1661'

1670 NEXTNScan 'FORNScan...

1671'

1680 '*** PRINT #1, USING "##.###"; Mass; Signal

1681'

1690 NEXT NInt 'FORNInt...

1691'

1695 FOR ii=0 TO IntNum: PRINT #1, USING "##.###"; Mass; Signal: NEXT ii

1696 '

1700 ' *** Plotting data »**

1701'

1705 X0%=0.0

1706'

1710 FOR ii=l TO IntNum

1711'

1720 DRAW "BM=X0%;,=Y0%;"

1730 YP%=YPix-(YVal(ii)-YNeg)*YFac»YScale: XP%=ii»DelMass*XFac

1740 IF YVal(ii)>YPos THEN YP%=0

1750 IF YVal(ii)<YNeg THEN YP%=YPix

1760 Y0%=YP%

1770 DRAW "M=X0%;,=Y0%;": DRAW "M=X0%;,=YP%;": DRAW "M=XP%;,=YP%;": X0%=XP%

1771'

1780 NEXT ii

1781'

181
1790 LOCATE 22,1: PRINT"

1800 PRINT "Rescale Plot:";: INPUT YScale

1810 IF YScale > 1.0 THEN GOTO 1705

1820 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT MasSpecl.O with 'E')"

1830 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 1830

1831'

1900 CLOSE ' Close OutputFile

1901'

1910 END

1911"

1912'

3000 ' *** SUBROUTINES ARE LOCATED HERE !!! ***

3001'

3010 ' *** PC21 WRITE ***

3011'

3020 BFLAG%=0

3030 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1

3040 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1

3050 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1

3060 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command

3070 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write

3080 RETURN

3081'

3100 ' *** PC21 READ ***

3101 '

3110 ANSWER$=" "+ Reserve string space for response

3120 CALL PC21READ(ANSWERS, ADDRESS%, BFLAG%) ' Execute read

3130 IF BFLAG%=0 THEN RETURN

3140 NUM#=0: FOR X=l TO 4

3150DIGIT%=ASC(MID$(ANSWER$,X,1))

3160 NUM#=NUM#+DIGIT%*256A(4-X): NEXT

3170 ANSWER$=STR$(NUM#)

3180 RETURN ' BFLAG% identifies binary report commands

3181'

3400 ' *** Main WRITE/READ Subroutines to CAMAC ***

3401'

3410 CALL CAMO(N%,F%,A%,D%,Q%,X%)

3420 RETURN

3421'

3430 CALL CAMI24(N%,F%,A%,D24%(1),Q%,X%)

3450 RETURN

I

182
3451'

3460 CALL CAM(N%,F%,A%,D%,Q%/X%)

3470 RETURN

3471'

3530 ' *** Set DAC ***

3531'

3540 URamp#=INT(URamp*32767/5)-32767

3545 N%=DAC#:F%=16:A%=3:D%=URamp#: GOSUB 3410

3550 RETURN

3551"

4100' ****** Get ADC data

4101'

4110 FOR 1=1 TO NADC: N%=ADC#:F%=2:A%=0: GOSUB 3460: NEXT I 'GoSub CAMO

4120 ADC=D%: ADC=-l*ADC*10/4096

4130 RETURN

183

PASCAL Programs

184

IO CHECK.PAS

file : IO_CHECK.PAS

function : Check routines for I/O operations

author : W.Maring

changes : 12.02.93

14.05.93 (for GRAFICS mode)

UNITICLCheck;

j$IFDEF CPU87}

($N+}

{$ELSE}

($N-(

{$ENDIF1

INTERFACE

USES

Crt,

Dos,

Graph;

TYPE

($IFDEF CPU87)

Real = Single;

($ENDIF1

TStrl = String[l];

TStr2 = String[2];

TStr4 = String[4];

TStr40 = String[40];

TStr80 = String[80];

CONST

Esc = Char(27);

PROCEDURE GetDateTime(VAR DatTimStr: TStr40);

PROCEDURE PrintFileHeader(VAR FileFil: Text; FileName: TStr40);

185
PROCEDURE PClearMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80);

PROCEDURE PMenuXY(MenuX/MenuY,Color,BkColor: Integer; MenuStr: TStr80);

PROCEDURE InpChar(VAR InputString: TStr80);

PROCEDURE PInpChar(MenuX,MenuY,Color,BkColor: Integer; VAR MenuStr: TStr80;

VAR InputString: TStr80);

PROCEDURE InputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40);

PROCEDURE PInputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

PROCEDURE OutputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40);

PROCEDURE POutputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

PROCEDURE ReadReal(InpString: TStr40; DoLimit,UpLimit: Real;

VAR Reallnp: Real);

PROCEDURE PReadReal(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Reallnp: Real; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

PROCEDURE ReadInt(InpString: TStr40; DoLimit,UpLimit: Integer;

VAR Intlnp: Integer);

PROCEDURE PReadInt(InpString: TStr80; DoLimit/UpLimit: Real;

VAR Intlnp: Integer; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

PROCEDURE ReadStr(InpString: TStr40; VAR Strlnp: TStr80);

PROCEDURE PReadStr(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Strlnp: TStr80; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

PROCEDURE ReadChar(InpString: TStr40; VAR Charlnp: TStrl);

PROCEDURE PReadChar(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Charlnp: TStrl; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

IMPLEMENTATION

PROCEDURE GetDateTime: String containing date/time

186

PROCEDURE GetDateTime(VAR DatTimStr: TStr40);

VAR

YearStr : TStr4;

MonthStr,

DayStr,

HourStr,

MinStr,

SecStr : TStr2;

ActYear,

ActMonth,

ActDay,

ActDayOfWeek,

ActHour,

ActMin,

ActSec,

ActSeclOO : Word;

BEGIN

GetDate(ActYear,ActMonth,ActDay,ActDayOfWeek);

GetTime(ActHour,ActMin,ActSec,ActSeclOO);

Str(ActYear:4,YearStr);

Str(ActMonth:2,MonthStr);

Str(ActDay:2,DayStr);

Str(ActHour:2,HourStr);

Str(ActMin:2,MinStr);

Str(ActSec:2,SecStr);

DatTimStr:=MonthStr+7'+DayStr+7'+YearStr

+' '+HourStr+':'+MinStr+,:'+SecStr;

END;

I-
PROCEDURE PrintFileHeader: prints file header

 ,

PROCEDURE PrintFileHeader(VAR FileFil: Text; FileName: TStr40);

VAR

ActYear,

ActMonth,

ActDay,

ActDayOfWeek,

187
ActHour,

ActMin,

ActSec,

ActSeclOO : Word;

BEGIN

GetDate(ActYear,ActMonthActDay,ActDayOfWeek);

GetTime(ActHour,ActMin,ActSec,ActSeclOO);

Writeln(FileFil,FileName/ ^ActMontfrV/VActDay^/AActYear

,' ',ActHour:l/:',ActMin:l/:',ActSec:l);

END;

PROCEDURE PClearMenuXY: clears the MenuStr on the screen

(needs to be in GRAFICS mode !!!)

PROCEDURE PClearMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80);

BEGIN

SetColor(BkColor);

OutTextXY(MenuX,MenuY,MenuStr);

SetColor(Color);

END;

(-
PROCEDURE PMenuStr: plots the MenuStr on the screen

(needs to be in GRAFICS mode !!!)

 }

PROCEDURE PMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80);

BEGIN

OutTextXY(MenuX/MenuY,MenuStr);

END;

PROCEDURE InpChar: uses ReadKey command to read string var

PROCEDURE InpChar(VAR InputString: TStr80);

VAR

InpChar : Char;

InpStr : String;

XCPos,

188
XCPosSav,

YCPos,

YCPosSav : Integer;

InpOkay : Boolean;

BEGIN

InpStr:= ";

XCPos:= WhereX;

XCPosSav:= XCPos;

YCPos:= WhereY;

YCPosSav:= YCPos;

InpOkay:= False;

REPEAT

InpChar:= ReadKey;

IF InpChar=Char(27) THEN

BEGIN

InputString:= Char(27);

Exit;

END

ELSE

BEGIN

IF InpChar=Char(8) THEN

BEGIN

IF XCPos>=XCPosSav+l THEN .

BEGIN

GotoXY(XCPos-l,YCPosSav);

WriteC ');

GotoXY(XCPos-l,YCPosSav);

XCPos:= XCPos-1;

InpStr:=Copy(InpStr,l,XCPos-XCPosSav);

END;

END

ELSE

BEGIN

Write(InpChar);

XCPos:= XCPos+1;

IF NOT (InpChar=Char(13)) THEN InpStr:= InpStr+InpChar;

InpOkay:= True;

END;

END;

UNTIL InpChar=Char(13);

Writeln;

189

IF InpOkay THEN

BEGIN

InputString:= InpStr;

END

ELSE

BEGIN

GotoXY(l,YCPosSav);

ClrEOL;

END;

END;

j

PROCEDURE PInpChar: uses ReadKey command to read string var

(needs to be in GRAFICS mode !!!)

 }

PROCEDURE PInpChar(MenuX,MenuY,Color,BkColor: Integer; VAR MenuStr: TSrr80;

VAR InputString: TStr80);

VAR

StrLength: Integer;

Ch : Char;

InputStr: String;

BEGIN

InputStr:= ";

StrLength:= 0;

REPEAT

Ch:= ReadKey;

IF Ch=Char(27) THEN

BEGIN

InputString:= Char(27);

Exit;

END

ELSE

BEGIN

IF (Ch=Chr(8)) AND (StrLength<Length(InputStr)+l)

AND (StrLength>0) THEN

BEGIN

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

StrLength:= StrLength-1;

InputStr:=Copy(InputStr,l,(Length(InputStr)-l));

MenuStr:= Copy(MenuStr,l,(Length(MenuStr)-l));

190
END;

IF NOT (Ch=Chr(13)) AND (Ch IN ['!'..'-']) THEN

BEGIN

StrLength:= StrLength+1;

InputStr:= InputStr+Ch;

MenuStr:= MenuStr+Ch;

END;

END;

InputString:= InputStr;

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

UNTIL Ch IN [Chr(13)];

END;

PROCEDURE InputFile: checks that input file exists and opens input file

FileName=Char(27) if ESC

=NonEx if not existent

 ,

PROCEDURE InputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40);

VAR

Ch : Char;

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

Write(FilePrompt);

InpChar(FileName);

IF FileName=Char(27) THEN Exit;

IF FilePath='LocalDir' THEN

BEGIN

Assign(FileFiLFileName);

END

ELSE

BEGIN

Assign(FileFil,FilePath+FileName);

END;

($M

Reset(FileFil);

Close(FileFil);

($1+1

191
IF IOResultoO THEN

BEGIN

FileName:= 'NonEx';

WritelnC*** file not found!! ***');

IOokay:=FaIse;

END

ELSE

BEGIN

Reset(FileFil);

IOokay:=True;

END;

UNTIL IOokay;

END;

PROCEDURE PInputFile: checks that input file exists and opens input file

(needs to be in GRAFICS mode !!!)

FileName=Char(27) if ESC

=NonEx if not existent

 }

PROCEDURE PInputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

VAR

Ch : Char;

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

MenuStr:= FilePrompt;

PMenuXY(MenuX>lenuY,Color,BkColor,MenuStr);

PInpChar(MenuX,MenuY,Cok>r,BkColor,MenuStr,FileName);

IF FileName=Char(27) THEN

BEGIN

Exit;

END;

IF FilePath=,LocalDir' THEN

BEGIN

Assign(FileFil,FileName);

END

ELSE

192
BEGIN

Assign (FileFil,FilePath+FileName);

END;

($I-(

Reset(FileFil);

Close(FileFil);

($1+)

IF IOResultoO THEN

BEGIN

FileName:= 'NonEx';

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** file NOT found !! ***';

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

IOokay:=False;

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

BEGIN

Reset(FileFil);

IOokay:=True;

END;

UNTIL IOokay;

END;

{

PROCEDURE OutputFile: checks that out putfile doesnot already exist and

opens output file

FileName=Char(27) if ESC

=AlreadyEx if already existent

 1

PROCEDURE OutputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40);

VAR

Ch : Char;

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

Write(FilePrompt);

InpChar(FileName);

193
IF FileName=Char(27) THEN Exit;

IF FileParh='LocalDir' THEN

BEGIN

Assign(FileFil,FileName);

END

ELSE

BEGIN

Assign(FileFil,FilePath+FileName);

END;

{SI-}

Reset(FileFil);

Close(FileFil);

($1+1

IF IOResult=0 THEN

BEGIN

FileName:= 'AlreadyEx';

WritelnO*** file already exists!! ***');

Write('new file name ? (Y/N):');

REPEAT

Ch:= ReadKey;

UNTIL Ch IN ['n'/N'/y'/Y'];

Writeln(Ch);

IF (Ch='N) OR (Ch='n') THEN

BEGIN

($1-1

Rewrite(FileFil);

($1+)

IF IOResultoO THEN

BEGIN

WritelnC*** write ERROR!! ***');

IOokay:=False;

END

ELSE

BEGIN

IOokay:=True;

END;

END

ELSE

IOokay:=False;

END

ELSE

194
BEGIN

($1-1

Rewrite(FileFil);

($1+)

IF IOResultoO THEN

BEGIN

WritelnC*** write ERROR!! ***');

IOokay:=False;

END

ELSE

BEGIN

IOokay:=True;

END;

END;

UNTIL IOokay;

END;

PROCEDURE POutputFile: checks that out putfile doesnot already exist and

opens output file

(needs to be in GRAFICS mode !!!)

FileName=Char(27) if ESC

=AlreadyEx if already existent

)

PROCEDURE POutputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40;

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer;

VARMenuStr:TStr80);

VAR

Ch : Char;

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

MenuStr:= FilePrompt;

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

PInpChar(MenuX/MenuY,Color,BkColor/MenuStr,FileName);

IF FileName=Char(27) TFIEN

BEGIN

Exit;

END;

IF FilePath='LocalDir' THEN

195
BEGIN

Assign(FileFil,FileName);

END

ELSE

BEGIN

Assign(FileFil/FiIePath+FileName);

END;

f$I-l

Reset(FileFil);

CIose(FileFil);

($1+1

IF IOResult=0 THEN

BEGIN

FileName:= 'AlreadyEx';

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** file already EXISTS !! ***';

PMenuXYCMenuX^enuY^olo^BkColo^MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= 'new file name ? (Y/N):';

PMenuXY(MenuX>lenuY,Color,BkColor,MenuStr);

REPEAT

Ch.= ReadKey;

UNTIL Ch IN ['n'/N'/y'/Y'];

MenuStr:= MenuStr+Ch;

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

IF (Ch='N') OR (Ch='n') THEN

BEGIN

($1-1

Rewrite(FileFil);

($1+)

IF IOResultoO THEN

BEGIN

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** write ERROR !! ***';

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

IOokay:=False;

PClearMenuXYCMenuX^enuY^olo^BkColo^MenuStr);

END

196
ELSE

BEGIN

IOokay:=True;

END;

END

ELSE

IOokay:=False;

END

ELSE

BEGIN

($1-1

Rewrite(FileFil);

{$1+1

IF IOResultoO THEN

BEGIN

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

. MenuStr:= '*** write ERROR !! ***';

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

IOokay:=False;

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

BEGIN

IOokay:=True;

END;

END;

UNTIL IOokay;

END;

PROCEDURE ReadReal: checks that input is REAL and is in input interval

PROCEDURE ReadReal(InpString: TStr40; DoLimit,UpLimit: Real; VAR ReaEnp: Real);

VAR

IOokay : Boolean;

RealStr : TStr40;

Code : Integer;

BEGIN

IOokay:=False;

197
REPEAT

Write(InpString);

($1-1

{ Readln(Reallnp);)

InpChar(RealStr);

(IF RealStr=Esc THEN Exit;)

Val(RealStr,RealInp,Code);

IF CodeoO THEN

BEGIN

Writeln('*** input ERROR !! ***');

END

ELSE

BEGIN

IF (Reallnp < DoLimit) OR (Reallnp > UpLimit) THEN

BEGIN

IOokay:=False;

WritelnC*** out of Range !! ***');

END

ELSE

IOokay:=True;

END;

($1+)

UNTIL IOokay;

END;

PROCEDURE PReadReal: checks that input is REAL and is in input interval

(needs to be in GRAFICS mode!)

PROCEDURE PReadReaI(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Reallnp: Real; MenuX,MenuY,Color,BkColor: Integer;

VARMenuStr:TStr80);

VAR

IOokay : Boolean;

RealStr : TStr40;

Code : Integer;

BEGIN

IOokay:=False;

REPEAT

MenuStr:= InpString;

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

198
PInpChar(MenuX,MenuY,Color,BkColor,MenuStr,RealStr);

($1-1

Val(RealStr,RealInp,Code);

IF CodeoO THEN

BEGIN

PClearMenuXY(MenuX/MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** input ERROR !! ***';

PMenuXY(MenuX,MenuY/Color,BkColor,MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

BEGIN

IF (Reallnp < DoLimit) OR (Reallnp > UpLimit) THEN

BEGIN

IOokay:=False;

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** out of RANGE !! ***';

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

IOokay:=True;

END;

($1+1

UNTIL IOokay;

END;

PROCEDURE Readlnt: checks that input is INTEGER and is in input interval

PROCEDURE ReadInt(InpString: TStr40; DoLimit,UpLimit: Integer;

VAR Intlnp: Integer);

VAR

IOokay : Boolean;

IntStr : TStr40;

Code : Integer;

BEGIN

IOokay:=False;

199
REPEAT

Write(InpString);

{$1-1

InpChar(IntStr);

Val(IntStr,IntInp,Code);

IF CodeoO THEN

BEGIN

Writeln('*** input ERROR!! ***');

END

ELSE

BEGIN

IF (Intlnp < DoLimit) OR (Intlnp > UpLimit) THEN

BEGIN

IOokay:=False;

WritelnC*** out of Range !! ***');

END

ELSE

IOokay: =True;

END;

($1+}

UNTIL IOokay;

END;

PROCEDURE PReadlnt: checks that input is INTEGER and is in input interval

(needs to be in GRAFICS mode!)

 }

PROCEDURE PReadInt(InpString: TStr80; DoLimitUpLimit: Real;

VAR Intlnp: Integer; MenuX,MenuY,Color,BkColor: Integer;

VAR MenuStr: TStr80);

VAR

IOokay : Boolean;

IntStr : TStr40;

Code : Integer;

BEGIN

IOokay:=False;

REPEAT

MenuStr: = InpString;

PMenuXY(MenuX/MenuY/Color,BkColor,MenuStr);

PInpChar(MenuX,MenuY,CoIor,BkColor,MenuStr,IntStr);

($M

200
Val(IntStr,IntInp,Code);

IF CodeoO THEN

BEGIN

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:='*** input ERROR !!***';

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

BEGIN

IF (Intlnp < DoLimit) OR (Intlnp > UpLimit) THEN

BEGIN

IOokay:=False;

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= '*** out of RANGE !! ***';

PMenuXY(MenuX,MenuY,Color/BkColor/MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

IOokay:=True;

END;

($1+)

UNTIL IOokay;

END;

PROCEDURE ReadStr: reads a STRING

PROCEDURE ReadStr(InpString: TStr40; VAR Strlnp: TStr80);

VAR

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

Write(InpString);

($1-1

InpChar(Strlnp);

(Readln(Strlnp); (

201
IF IOResultoO THEN

BEGIN

WritelnC*** input ERROR!! ***');

END

ELSE

BEGIN

IOokay:=True;

END;

($1+1

UNTIL IOokay;

END;

I-
PROCEDURE PReadStr: reads a STRING

(needs to be in GRAFICS mode!)

 1
PROCEDURE PReadStr(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Strlnp: TStr80; MenuX,MenuY,Color,BkColor: Integer;

VARMenuStr:TStr80);

VAR

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

MenuStr:= InpString;

PMenuXY(MenuX,MenuY,Color/BkColor,MenuStr);

PInpChar(MenuX,MenuY,Color,BkColor,MenuStr,StrInp);

($1-1

IF IOResultoO THEN

BEGIN

PClearMenuXY(MenuX/MenuY,Color,BkColor/MenuStr);

MenuStr:= '*** input ERROR!! ***';

PMemiXY(MenuX,MenuY,Color,BkColor,MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

END

ELSE

BEGIN

IOokay:=True;

END;

($1+)

202
UNTIL IOokay;

END;

PROCEDURE ReadChar: reads a CHARACTER

PROCEDURE ReadChar(InpString: TStr40; VAR Charlnp: TStrl);

VAR

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

Write(InpString);

($1-1

InpChar(Charlnp);

(Readln(Charlnp);)

IF IOResultoO THEN

BEGIN

WritelnC*** input ERROR!! ***');

END

ELSE

BEGIN

IOokay:=True;

END;

($1+)

UNTIL IOokay;

END;

PROCEDURE PReadChar: reads a CHARACTER

(needs to be in GRAFICS mode!)

 }

PROCEDURE PReadChar(InpString: TStr80; DoLimit,UpLimit: Real;

VAR Charlnp: TStrl; MenuX,MenuY,Color,BkColor: Integer;

VARMenuStr:TStr80);

VAR

IOokay : Boolean;

BEGIN

IOokay:=False;

REPEAT

203
MenuStr:= InpString;

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

PlnpCharCMenuX^enuY^olo^BkColo^MenuSt^Charlnp);

($1-1

IF IOResultoO THEN

BEGIN

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr);

MenuStr:= "** input ERROR!! ***';

PMenuXY(MenuX,MenuY,Color/BkColor,MenuStr);

Delay(500);

PClearMenuXY(MenuX,MenuY/Color,BkColor,MenuStr);

END

ELSE

BEGIN

IOokay:=True;

END;

|$I+|

UNTIL IOokay;

END;

END. (IMPLEMENTATION of IO.Check)

I
204

P_ANDATA.PAS

file : P_ANDATA.PAS

function : data

author : W.Maring

changes : 05-07-93

($1 P_ComOpt)

UNITP_AnData;

{$IFDEF CPU871

($N+)

f$ELSE|

f$N-)

($ENDIF(

INTERFACE

|$IFDEF AngSpec}

TYPE

j$IFDEF CPU87|

Real = Single;

($ENDIF)

TArray = Array [0..2000] of Real;

TMessRec = RECORD

AngStart,

AngEnd,

DifAng,

DelAng,

Mass,

URamp,

SigAverage,

Signal,

DarkCnt,

LaserFreq,

IntegTime,

Difx,

YScale,

205
XValMax, ,

YValMax : Real;

XVal,

YVal,

ActPlotData : TArray;

IntSpec,

IntNum,

IntRange,

NumScan,

NInt,

NScan : Integer;

NormScale,

NewFile,

EnExit,

PltHP : Boolean;

Comment : String[80];

PltDirec,

FileDirec,

ExeDirec,

PltFileName,

FileName : String[60];

PltFil,

DatFil : Text;

END;

{$ENDIF(

IMPLEMENTATION

END/

206

P CAM2.PAS

file : P_CAM2.PAS

function : programming CAMAC functions

author : B.Ungerer, MPI Stroemungsforschung, Goettingen, FRG

files : MES40BJ.OBJ

changes : 04.08.88//09.02.93//18.02.93

)

UNITP_Cam2;

($IFDEF CPU87)

($N+)

(SELSE1

i$N-}

($ENDIF)

INTERFACE

USES

crt,

dos,

printer;

TYPE

($IFDEF CPU87)

Real = Single;

($ENDIF}

($L Mes40bj) (orig.:Cam6001 Asm, without "Real_cvt"}

PROCEDURE Init_Crate;

FUNCTION TimeConv(timeval:Real): Integer;

PROCEDURE Clear_TimSca(subadress,d:Integer);

PROCEDURE Clear_LAM(subadress,d:Integer);

PROCEDURE Write_TimSca(subadress,d:Integer);

PROCEDURE Read_Scaler(subadress:Integer; VAR signaHnteger);

PROCEDURE WaitScaler;

PROCEDURE Init_TimSca;

PROCEDURE ResetJTimSca;

207
PROCEDURE Start_TimSca(time:Real);

PROCEDURE Set_DACl(subadress:Integer; volt:Real);

PROCEDURE Set_DAC2(subadress:Integer; volt:Real);

PROCEDURE Get_ADCl(subadress:Integer; VAR signahReal);

PROCEDURE Get_ADC2(subadress:Integer; VAR signal:Real);

CONST

NO : Integer = 0,

Nl : Integer = 1

N2 : Integer = 2,

N3 : Integer = 3,

N9 : Integer = 9,

N10 : Integer = 10,

N16 : Integer = 16,

N17 : Integer = 17;

N23 : Integer = 23,

N25 : Integer = 25,

N26 : Integer = 26,

N27 : Integer = 27,

N64 : Integer = 64;

modul addresses:

timsca : Integer = 10; (timer/sealer)

dac : Integer = 12; (12bit DAC(

adc : Integer = 9; (12bit ADC|

(-
sub addresses:

dac_c3 : Integer = 3;

adc_cl : Integer = 0;

adc_c2 : Integer = 1;

tim_cl : Integer = 0;

tim_c2 : Integer = 1;

sca_cl :Integer = 1;

sca_c2 : Integer = 3;

(DAC:Ch#3}

(ADC:Ch#l)

(ADC: Ch #2}

(Timer: Ch #1}

(Timer: Ch #2}

(Sealer: Ch#l)

(Sealer: Ch #2)

208

d : integer = 0;

q : integer = 0;

x : integer = 0;

Id :LongInt = 0;

data to calculate time value for timer/sealer modul

)

OvfTab : Array [1..32] of Integer = (4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,

9,8,9,7,9,8,9,6,9,8,9,7,9,8,9);

MulTab : Array [1..32] of Integer = (0,16,8,17,4,18,9,19,2,20,10,21,5,

22,11,23,1,24,12,25,6,26,13,27,3,

28,14,29,7,30,15,31);

Countlnit: Longlnt = $00FFFFFF;

NADC = 3;

IMPLEMENTATION

{ Beginn DSP-Software)

(

Declarations of CAMAC I/O routines for inclusion in

a PASCAL program.

PROCEDURE Crate_Set (VAR Crate: INTEGER); EXTERNAL;

PROCEDURE Camo (VAR N,F,A,Data : INTEGER;

VAR Q,X : INTEGER); EXTERNAL;

PROCEDURE Cami (VAR N,F,A: INTEGER;

VAR Data,Q,X : INTEGER); EXTERNAL;

PROCEDURE Cami24 (VAR N,F,A : INTEGER;

VAR Data : Longlnt;

VAR Q,X : INTEGER); EXTERNAL;

PROCEDURE Camo24 (VAR N,F,A: INTEGER;

VAR Data : Longlnt;

VAR Q,X: INTEGER);

Caml (VAR Encoded_Lam : INTEGER);

Camel (VAR Control_word : INTEGER);

PROCEDURE <

PROCEDURE(

PROCEDURE DMAset (VAR Crate,Nbytes,Qmode,Count: INTEGER); EXTERNAL;

EXTERNAL;

EXTERNAL;

EXTERNAL;

209
PROCEDURE DMAI (VAR N,F,A : INTEGER;

Data : Longint;

VAR Error : INTEGER); EXTERNAL;

PROCEDURE DMAO (VAR N,F,A : INTEGER;

Data : Longint;

VAR Error : INTEGER); EXTERNAL;

PROCEDURE CamCyc (VAR ncycles : INTEGER); EXTERNAL;

PROCEDURE Crate; EXTERNAL;

(************* Ende DSP - Software ***********************************}

PROCEDURE Init_Crate

modul : dsp 6001 CAMAC crate controller

function : initilize CC #1

)

PROCEDURE Init_Crate;

BEGIN

Crate_Set(Nl);

Camcl(N64);

Camcl(Nl);

END;

FUNCTION TimeConv

function : converting time into timer/sealer format

 }

FUNCTION TimeConv(timeval:Real): Integer;

VAR

TimeBas : Real;

NCount : Integer;

h

TimeB : Longint;

ContLoop : Boolean;

BEGIN

ContLoop:= True;

timeval:= timeval/1000.0;

WHILE ContLoop DO

BEGIN

TimeB:=Round(Ln(timeval/2.30258)/Ln(10));

TimeBas:= Exp(TimeB*Ln(10));

210
timeval:= timeval/TimeBas'1000.0;

NCount:= 0;

WHILE (timeval>2.0) DO

BEGIN

timeval:= timeval/2.0;

NCount:= NCount + 1;

END;

j:= Round(32*(timeval-l)+l);

ContLoop:= False;

IF (NCount-OvfTab[j])<0 THEN

BEGIN

TimeB:=TimeB-l;

ContLoop:= True;

END;

IF (NCount-OvfTab[j])>15 THEN

BEGIN

TimeB:=TimeB+l;

ContLoop:= True;

END;

END;

TimeB:=TimeB+6;

IF (TimeB<0) OR (TimeB>7) THEN Writeln('ERROR: Time outside range!!!');

TimeConv:=(128»MulTab[j])+(8*(NCount-OvfTab[j])+TimeB);

END;

PROCEDURE Clear_TimSca

modul : sec_ts201 timer/sealer

input : subadress

PROCEDURE Clear_TimSca(subadress,d:Integer);

BEGIN

camo(timsca,N9,subadress,d,q/x);

END;

PROCEDURE Clear_LAM

modul : sec_ts201 timer/sealer

input : subadress

PROCEDURE Clear_LAM(subadress,d: Integer);

211
BEGIN

camo(timsca,N23,subadress,d,q/x);

END;

{-

PROCEDURE WriteJTimSca

modul : sec_ts201 timer/sealer

input : subadress

PROCEDURE Write_TimSca(subadress,d: Integer);

BEGIN

camo(timsca,N17,subadress,d,q,x);

END;

PROCEDURE Read.Scaler

modul : sec_ts201 timer/sealer

input : subadress (1,3)

 }

PROCEDURE Read_Scaler(subadress:Integer; VAR signal: Integer);

CONST

data: LongInt= 0;

BEGIN

cami24(timsca,N0,subadress,data,q,x);

signal:= countinit - data;

END;

PROCEDURE Wait_Scaler

modul : sec_ts201 timer/sealer

input : subadress (1,3)

PROCEDURE Wait_Scaler;

VAR

LTest : Integer;

BEGIN

LTest:=0;

WHILE LTest=0 DO

BEGIN

CAML(LTest);

END;

212
END;

PROCEDURE Init TimSca

PROCEDURE InitJTimSca;

BEGIN

Write_TimSca(13,l);

END;

f-
PROCEDURE Reset TimSca

PROCEDURE ResetJTimSca;

BEGIN

Clear_TimSca(O,0);

Clear_TimSca(l,0);

END;

PROCEDURE Start_TimSca

input: Time value

PROCEDURE Start_TimSca(time:Real);

BEGIN

Write_TimSca(13,l);

Write_TimSca(0,TimeConv(time));

Write_TimSca(4,l);

Wait_Scaler;

Clear_LAM(12,l);

END;

PROCEDURE Set_DACl

modul : dspE250 DAC, 0...+10V range !!!

input : subadress, volt

PROCEDURE Set_DACl(subadress:Integer; voltiReal);

VAR

213
digval: Integer;

CONST

r2_xx : Real = 32767.0;

BEGIN

digval:=(round (volt*r2_xx/5.0 - r2_xx) + 0);

Camo(dac,N16,subadress,digval,q,x);

END;

PROCEDURE Set_DAC2

modul : dspE250 DAC, -5...+5V range !!!

input : subadress, volt

 }

PROCEDURE Set_DAC2(subadress:Integer; volt:Real);

VAR

digval: Integer;

CONST

r2_xx : Real = 32767.0;

BEGIN

digval:=(round (volt*r2_xx/5.0) + 0);

Camo(dac,N16,subadress,digval,q,x);

END;

PROCEDURE Get_ADCl

modul : sec_adc, -5...+5V

input : subadress

output : sig

 1
PROCEDURE Get_ADCl (subadress:Integer; VAR signal:Real);

VAR

i,

digval : Integer;

CONST

r2_xx : Real = 4096.0;

BEGIN

FOR i:=l TO NADC DO

BEGIN

Cami(adc,N2,subadress/digval,q/x);

END;

Signals -1.0*digval*10.0/r2_xx;

214
END;

PROCEDURE Get_ADC2

modul : sec_adc, -10...+10V

input : subadress

output : sig

PROCEDURE Get_ADC2 (subadress:Integer; VAR signal:Real);

VAR

i,

digval : Integer;

CONST

r2_xx : Real = 4096.0;

BEGIN

FOR i:=l TO NADC DO

BEGIN

Cami(adc,N2,subadress,digval,q,x);

END;

Signal:= -1.0*digval*20.0/r2_xx;

END;

END. (IMPLEMENTATION OF PCAM2 (

215

P FDATA.PAS

{

file : P_FDATA.PAS

function : data

author : W.Maring

changes : 05-07-93

|$I P_ComOpt}

UNIT P_FData;

($IFDEF CPU871

l$N+}

f$ELSEj

($N-)

($ENDIF[

INTERFACE

(SIFDEF FreqSpec)

TYPE

(SIFDEF CPU87)

Real = Single;

(SENDIEj

TArray = Array [0. .2000] of Real;

TMessRec = RECORD

EStart,

EWidth,

DifEn,

DelEn,

Mass,

URamp,

SigAverage,

Signal,

DarkCnt,

DetPos,

IntegTime,

Difx,

YScale,

216
XValMax,

YValMax : Real;

XVal,

YVal,

ActPlotData : TArray;

IntSpec,

IntNum,

IntRange,

NumScan,

NInt,

NScan : Integer;

NormScale,

NewFile,

EnExit,

PltHP : Boolean;

Comment : String[80];

PltDirec,

FileDirec,

ExeDirec,

PltFileName,

FileName : String[60];

PItFil,

DatFil : Text;

END;

|$ENDIF)

IMPLEMENTATION

END.

217

P GRAF.PAS

file : P_GRAF.PAS

function : plotting of data

author : W.Maring

files : P_GrafIn.Pas (inividual settings)

changes : 09/02/93

14/05/93 (input in GRAFIC mode)

($1 P_ComOpt}

UNIT P_Graf;

($IFDEF CPU87}

($N+)

($ELSE|

f$N-)

{$ENDIF|

INTERFACE

USES

Crt,

Dos,

Graph,

Printer,

($IFDEF Masspec)

P_MData,

($ENDIF)

($IFDEF Augspec(

P_AData,

($ENDIF(

j$IFDEF Angspec)

P_AnData,

($ENDIF(

($IFDEF Freqspecl

P_FData,

($ENDIF(

IO_Check;

218

TYPE

{$IFDEF CPU87)

Real = Single;

{$ENDIF)

TStr2 = Stringß];

TStr6 = String[6];

TStrlO = String[10];

TStr30 = String[30];

TStr80 = String[80];

TGrafRec = RECORD

PlotType : TStrlO;

GDirec : TStr30;

Color,

BkColor,

ScalCount,

ScalCountCorr,

ScalDigCount,

XDigl,

XDig2,

XPix,

YPix,

XOffset,

YOffset,

GlattNum,

NoiseLevel,

MenuX,

MenuY : Integer;

YNorm,

YNormSav,

XPixFac,

YPixFac,

XScallnt,

XScallntLoc,

YScallnt,

XScalStart,

YScalStart: Real;

EnGrafics,

EnHrdCpy,

PltHP : Boolean;

219
END;

VAR

XPltFac,

YPltFac,

DifX : Real;

ii,

StrLength,

Gd,

Gm,

ErrCode,

ValCode : Integer;

Ch : Char;

Inputs tr,

MenuStr : TStr80;

GData : TGrafRec;

ExitSave : Pointer;

CONST

{$IFDEF Masspec)

YNeg = -0.25;

YPos = 4.0;

YTop = 0.15;

{$ENDIF1

{$IFDEF Augspec)

YNeg = -5.25;

YPos = 5.25;

YTop = 0.2;

($ENDIF)

($IFDEF Angspec)

YNeg = -100;

YPos = 1000;

YTop = 50;

($ENDIF)

($IFDEF Freqspecl

YNeg = -100;

YPos = 1000;

YTop - 50;

220
j$ENDIF)

XPlt : Integer = 8800;

YPlt : Integer = 5950;

PltOffsetX : Integer = 1000;

PltOffSetY : Integer = 1000;

XPltTickHeight : Integer = 105;

YPItTickHeight : Integer = 105;

XPixTickHeight : Integer = 5;

YPixTickHeight : Integer = 5;

EndTrue : Boolean = False;

Bpage : Array [0..1] of Byte=(l,0); (Fuer Page-Switching (

Buf : Byte = 1;

PROCEDURE RunTimeError;

PROCEDURE PltSetColor(PltColor: Integer;VAR Fil: Text);

PROCEDURE PltLineType(PltLine: Integer;VAR Fil: Text);

PROCEDURE PltPlotStart(VAR Fil: Text);

PROCEDURE PltPlotStop(VAR Fil: Text);

PROCEDURE HrdCpy (VAR OptChar: Char);

PROCEDURE Hardcopy(VAR PlotData : TMessRec);

PROCEDURE GetXYValMax(VAR PlotData: TMessRec);

PROCEDURE PltLineXY(XPl,YPl,XP2,YP2: Integer;VAR Fil: Text);

PROCEDURE PLineXY(XPl,YPl,XP2,YP2: Integer; GData: TGrafRec);

PROCEDURE PltWriteXY(XPl,YPl: Integer; PlotString: TStr80;VAR Fil: Text);

PROCEDURE PWriteXY(XPl,YPl: Integer; PlotString: String; GData: TGrafRec);

PROCEDURE PltMoveToXY(XPl,YPl: Integer;VAR Fil: Text);

PROCEDURE PMoveToXY(XPl,YPl: Integer; GData: TGrafRec);

PROCEDURE PltCircleXY(XPl,YPl,Radius: Integer;VAR Fil: Text);

PROCEDURE PCircleXY(XPl,YPl,Radius: Integer; GData: TGrafRec);

PROCEDURE XPlotTicks(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE YPlotTicks(VAR PlotData: TMessRec; GData: TGrafRec);

PROCEDURE XScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE YScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE PlotFrame(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE ClearMenuStr(VAR GData: TGrafRec);

PROCEDURE PMenuStr(VAR GData: TGrafRec);

PROCEDURE SmoothData(VAR PlotData: TMessRec; VAR GData: TGrafRec);

221
PROCEDURE CutNoise(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE HPGLFile(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE NextFile(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE DataPlot(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE GrafInit(VAR GData: TGrafRec); (file: P_GrafIn.Pas)

PROCEDURE StartGraphics(VAR GData: TGrafRec);

PROCEDURE PlotLoop(VAR PlotData: TMessRec; VAR GData: TGrafRec);

PROCEDURE StopGraphics(VAR GData: TGrafRec);

IMPLEMENTATION

PROCEDURE RunTimeError

($F+)

PROCEDURE RunTimeError;

VAR

Ch : Char;

BEGIN

ExitProc:= ExitSave;

IF GData.EnGrafics THEN

BEGIN

PWriteXY(100,100;>» RunTimeError, press any key ! ',GData);

Ch:= Readkey;

CloseGraph;

END;

Halt;

END;

($F-|

PROCEDURE PltSetColor

PROCEDURE PltSetColor(PltColor: Integer;VAR Fil: Text);

BEGIN

Write(Fii;SP'/Chr(PltColor+$30);;');

END;

222

,

PROCEDURE PltLineType

PROCEDURE PltLineType(PltLine: Integer;VAR Fil: Text);

BEGIN

IF PltLine < 0 THEN

Write(Fil/LT;')

ELSE

Write(Fii;LT',Chr(PltLine+$30);;');

END;

PROCEDURE PltPlotStart

PROCEDURE PltPlotStart(VAR Fil: Text);

BEGIN

Write(Fil,Chr(27)/
,E'/Chr(27),,%0B7IN;'); {Set: HPGL)

Write(Fil/RO90;'); (Set: Portrait 1

PltSetColor(l,Fil);

END;

{-

PROCEDURE PltPlotStop

PROCEDURE PltPlotStop(VAR Fil: Text);

BEGIN

Write(Fii;iN;SPO;');

Write(Fil/Chr(27)/'%0A'/Chr(27);E'); {Set: PCL)

Close(Fil);

END;

PROCEDURE HrdCpy

PROCEDURE HrdCpy (VAR OptChar: Char);

BEGIN

223
inline

($06/ (push es)

$55/ (push bp)

$c4/$be/optchar/{ les di,optchar[bp] (

$26/$8a/$ld/ (mov bl,es:[di])

$31/$c0/ (xor ax,ax }

$8e/$c0/ { mov es,ax }

$bd/$16/$00/ (mov bp,16)

$26/$8b/$46/$00/{ mov ax,es:[bp])

$8e/$c0/ (mov es,ax)

$bd/$30/$01/ ! mov bp,130 }

$26/$88/$5e/$00/(mov [bp],bl (

$cd/$05/ (int 5 }

$5d/ { pop bp)

$07); {

END;

pop es }

PROCEDURE Hardcopy

-}

PROCEDURE Hardcopy(VARPlotData : TMessRec);

VAR

c : Char;

Gesamt: Real;

Steps : Integer;

BEGIN

WITH PlotData DO

BEGIN

Assign(lst,'LPTl');

Rewrite(lst);

writeln(lst,chr(27)/3',chr(24)); (SET Graphics Linespace }

c:=chr(Bpage[Buf]+49);

hrdcpy(c);

writeln(lst,chr(27)/2');

FOR ii:=l TO 35 DO

BEGIN

writeln(lst,");

END;

Close(lst);

END;

(START Text Linespace)

224
END; (Ausgabe weiterer Infos: PROCEDURE Drucken/Mes4incl.pas)(

{-

PROCEDURE GetXYValMax

-)
PROCEDURE GetXYValMax(VARPlotData: TMessRec);

VAR

ii : Integer;

BEGIN

WITH PIotData DO

BEGIN

XValMax:= 0.0;

YValMax:= 0.0;

FOR ii:=0 TO IntNum DO

BF YVal[ii]>YValMax THEN

BEGIN

XValMax:= XVal[ii];

YValMax:= YVal[ii];

END;

IF YValMAx=0.0 THEN YValMax:=1.0;

END;

END;

(-
PROCEDURE PItLineXY:

■-!

PROCEDURE PltLineXY(XPl,YPl,XP2,YP2: Integer;VAR Fil: Text);

VAR

Xstr,

Ystr :TStr6;

BEGIN

PltMoveToXY(XPl,YPl,Fil);

Str(1.0*(XP2+PltOff3etX):6:2,Xstr);

Str(l .0*(YP2+PltOf fSetY) :6:2,Ystr);

Write(Fii;PD',Xstr/;,Ystr;;');

END;

225

PROCEDURE PLineXY:

PROCEDURE PLineXY(XPl,YPl,XP2,YP2: Integer; GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

Line(XPl +XOffset/YPl +YOffset,XP2+XOffset,YP2+YOf fset);

END;

END;

PROCEDURE PltWriteXY:

PROCEDURE PltWriteXY(XPl,YPl: Integer; PlotString: TStr80;VAR Fil: Text);

BEGIN

PltMoveToXY(XPl,YPl,Fil);

Write(Fil;LB',PlotString/Chr(3));

END;

PROCEDURE PWriteXY:

PROCEDURE PWriteXY(XPl,YPl: Integer; PlotString: String; GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

OutTextXY(XPl+XOffset,YPl+YOffset,PlotString);

END;

END;

PROCEDURE PltMoveToXY

-1
PROCEDURE PltMoveToXY(XPl,YPl: Integer;VAR Fil: Text);

VAR

XStr,

226
YStr: TStr6;

BEGIN

Str(1.0*(XPl+PltOffSetX):6:2,XStr);

Str(1.0*(YPl+PltOffSetY):6:2,YStr);

WriteCFil/PU^XStr/^YStr/;');

END;

I-
PROCEDURE PMoveToXY

PROCEDURE PMoveToXY(XPl,YPl: Integer; GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

MoveTo(XPl+XOffset,YPl+YOffset);

END;

END;

PROCEDURE PltCircleXY

PROCEDURE PltCircleXY(XPl,YPl,Radius: Integer;VAR Fil: Text);

VAR

PltStr: TStr2;

RStr :TStr6;

BEGIN

PltMoveToXY(XPl-38,YPl,Fil);

Str(16.0*(Radius):3:l,RStr);

{ Write(Fil/Cr,RStr/;');)

PltStr:='.';

Write(Fil,'LB',PltStr,Chr(3));

END;

PROCEDURE PCircleXY

PROCEDURE PCircleXY(XPl,YPl,Radius: Integer; GData: TGrafRec);

BEGIN

227
WITH GData DO

BEGIN

Circle(XPl+XOffset,YPl+YOffset,Radius);

END;

END;

PROCEDURE XPlotTicks

PROCEDURE XPlotTicks(VAR PlotData: TMessRec;VAR GData: TGrafRec);

VAR

ii,

XPixTO,

XPltTO,

YPixTO,

YPltTO,

YPixTl,

YPltTl: Integer;

LStr :TStrlO;

BEGIN

WITH PlotData, GData DO

BEGIN

FOR ii:=0 TO ScalCount-1+ScalCountCorr DO

BEGIN

XPixTO:=Round((XScalStart+ii*XScalIntLoc)*XPixFac);

YPixT0:= YPix;

YPixTl:= YPix-YPixTickHeight;

IF (XPixTO<XPix+l) THEN

BEGIN

PMoveToXY(XPixTO,YPixTO/GData);

PLineXY(XPixTO,YPixTO,XPixTO,YPixTl,GData);

Str((1.0*ii*XScalIntLoc+XVal[0]

+XScalStart):(XDigl+ScalDigCount):(XDig2+ScalDigCount),LStr);

PWriteXY(XPixT0-10,(YPix+10),LStr,GData);

IF PltHP THEN

BEGIN

XPltTO:=Round((XScalStart+ii*XScalIntLoc)*XPltFac);

YPltT0:= 0;

YPltTl:= YPltTickHeight;

PltMoveToXY(XPltTO,YPltTO,PItFU);

PltLineXY(XPltTO,YPltTO,XPltTO,YPltTl,PltFil);

228
Str((1.0*ii*XScalIntLoc+XVal[0]

+XScalStart):(XDigl+ScalDigCount):(XDig2+ScalDigCount),LStr);

PltWriteXY(XPltT0-190,-320,LStr,PltFil);

END;

END;

END;

END;

END;

I-
PROCEDURE YPlotTicks

PROCEDURE YPlotTicks(VAR PlotData: TMessRec; GData: TGrafRec);

VAR

ii,

XPixTO,

XPltTO,

YPixTO,

YPltTO,

XPixTl,

XPltTl : Integer;

LStr :TStrlO;

BEGIN

WITH PlotData, GData DO

BEGIN

FOR ii:=0 TO ScalCount DO

BEGIN

YPixT0:= YPix+Round(YNeg*YPixFac)

-Round((YScalStart+ii*YScalInt)*YPos/100.0*YPixFac);

XPixT0:= 0;

XPixTl:= YPixTickHeight;

PMoveToXY(XPixTO,YPixTO,GData);

PLineXY(XPixTO,YPixTO,XPixTl,YPixTO,GData);

Str((1.0*(ii+ScalCountCorr)*YScalInt):3:0,LStr);

PWriteXY(-30,YPixT0-2,LStr,GData);

IF PltHP THEN

BEGIN

YPltT0:= -Round(YNeg*YPltFac)

+Round((YScalStart+ii*YScalInt)*YPos/100.0*YPltFac);

XPltT0:= 0;

229
XPltTl:= YPltTickHeight;

PltMoveToXY(XPltTO,YPltTO,PltFil);

PltLineXY(XPltTO,YPltTO,XPltTl,YPltTO,PltFil);

Str((1.0*(ii+ScalCountCorr)*YScalInt):3:0,LStr);

PItWriteXY(-440,YPltT0-50,LStr,PltFil);

END;

END;

END;

END;

PROCEDURE XScaling

-)
PROCEDURE XScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec);

VAR

ScalMag,

ScalTest ; Real;

ScalOK : Boolean;

BEGIN

WITH PlotData, GData DO

BEGIN

ScalOk:= False;

ScalDigCount:= 0;

XScalIntLoc:= XScallnt;

ScalMag:= 1.0;

WHILE NOT ScalOK DO

BEGIN

ScalCount:= 0;

ScalCountCorr:= 0;

ScalTest:= 10;

WHILE ScalTest>l DO

BEGIN

ScalTest:= Abs(Abs(XVal[0])-ScalCount*XScalIntLoc) /XScallntLoc;

ScalCount:= ScalCount+1;

END;

IF XVal[0]>0.0 THEN

BEGIN

XScalStart:=-XVaI[0]+XScalIntLoc*ScalCount;

END

ELSE

230
BEGIN

XScalStart:=-Abs(XVal[0])+XScalIntLoc*ScalCount;

END;

IF XScalStart<XScalIntLoc/10 THEN ScalCountCorr:= 1;

ScalCount:=Round(Int(ScalMag*(XVal[IntNum]-XVal[0]+XScalStart))

/(ScalMag*XScalIntLoc));

IF (Abs(XVal[IntNum]-XVal[0])<2.0*XScalIntLoc) THEN (2.0)

BEGIN

XScalIntLoc:= XScalIntLoc/10.0;

ScalMag:= ScalMag*10.0;

ScalDigCount:= ScalDigCount+1;

END

ELSE

BEGIN

ScalOK:= True;

END;

END;

IF XScalIntLoc>0.9 THEN

ScalDigCount.= ScaIDigCount-1

ELSE

ScalDigCount:= ScalDigCount-2;

XPlotTicks(PlotData,GData);

END;

END;

PROCEDURE YScaling

PROCEDURE YScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec);

VAR

ScalTest : Real;

BEGIN

WITH PlotData, GData DO

BEGIN

YScalStart:= 0.0;

ScalCountCorr:= 0;

ScalCount:= 5;

YPlotTicks(PlotData,GData);

231
END;

END;

PROCEDURE PlotFrame

PROCEDURE PLotFrame(VAR PlotData: TMessRec; VAR GData: TGrafRec);

VAR

LStr : TStrlO;

DatTimStr: TStr30;

BEGIN

WITH PlotData, GData DO

BEGIN

PLineXY(O,O,XPix,0,GData);

PLineXY(XPix,0,XPix,YPix,GData);

PLineXY(XPix,YPix,0,YPix,GData);

PLineXY(0,YPix,0,0,GData);

PWriteXY(XPix-150,10,FileName,GData);

IFNormScaleTHEN

BEGIN

Str(YScale*YNorm:4:2,LStr);

END

ELSE

BEGIN

Str(YScale:4:2,LStr);

END;

PWriteXY(XPix-150,20/x'+LStr,GData);

Str(YNormSav:5:2,LStr);

PWriteXY(XPix-150,30,'YNorm:'+LStr,GData);

IF NormScale THEN

BEGIN

Str((YValMax/(100.0*YScale)):10,LStr);

END

ELSE

BEGIN

Str((YValMax*YNormSav/(100.0*YScale)):10,LStr);

END;

PWriteXY(XPix-150/40;Sig:x'+LStr,GData);

Str(GlattNum:l,LStr);

PWriteXY(XPix-150,50;Smoothed Ch.: '+LStr,GData);

232
Str(NoiseLevel:l,LStr);

PWriteXY(XPix-150Ä'Noiselevel:'+LStr,GData);

Str(XVal[0]:4:l,LStr);

($IFDEF Freqspec)

Str(XVal[0]:6:3,LStr);

|$ENDIF)

PWriteXY(-10,-10,LStr,GData);

($IFDEF Freqspec}

Str(EStart:9:3,LStr);

PWriteXY(50,-10,'('+LStr+'),
/GData);

($ENDIF)

Str(XVal[IntNum]:4:l,LStr);

($IFDEF Freqspec)

Str(XVaI[IntNum]:6:3,LStr);

j$ENDIF)

PWriteXY(XPix-20/-10,LStr,GData);

GetDateTime(DatTimStr);

PWriteXY(XPix-160,-20,DatTimStr,GData);

PWriteXY(0,-20,Comment,GData);

IF PltHP THEN

BEGIN

PltLineXY(0,0,XPlt,0,PltFil);

PltLineXY(XPlt,0,XPlt,YPlt,PltFil);

PltLineXY(XPlt/YPlt/0,YPlt/PltFiI);

PltLineXY(0,YPlt,0,0,PltFil);

PltWriteXY(XPlt-2000,YPlt-340,FiIeName,PltFil);

Str(YScale:5:l,LStr);

PltWriteXYCXPlt^OOO^Plt-SlO/x'+LStr^ltFil);

Str(YNormSav:5:2,LStr);

PltWriteXY(XPlt-2000,YPlt-680;Sig:x'+LStr,PltFil);

Str(GlattNum:l,LStr);

PltWriteXY(XPlt-2000,YPlt-750;Smoothed Ch.: '+LStr,PltFil);

Str(NoiseLevel:l,LStr);

PltWriteXY(XPix-2000/YPlt-820,,Noiselevel:,+LStr,PltFil);

Str(XVaI[0]:6:3,LStr);

PltWriteXY(-160,YPlt+80,LStr,PltFil);

(SIFDEF Freqspec)

Str(EStart:9:3,LStr);

PltWriteXY(480,YPlt+80/
,('+LStr+'),,PltFil);

($ENDIF)

233
Str(XVal[IntNum]:6:3,LStr);

PltWriteXY(XPlt-240,YPlt+80,LStr,PltFil);

PltWriteXY(XPlt-2050,YPlt+250,DatTimStr/PltFil);

PltWriteXY(0,YPlt+250,Comment,PltFiI);

END;

END;

END;

(

PROCEDURE ClearMenuStr

PROCEDURE ClearMenuStr(VAR GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

SetColor(BkColor);

PWriteXY(0,YPix+25,MenuStr,GData);

SetColor(Color);

END;

END;

PROCEDURE PMenuStr

PROCEDURE PMenuStr(VAR GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

PWriteXY(0,YPix+25,MenuStr,GData);

END;

END;

(

PROCEDURE SmoothData: using Savitzky-Golay-algorithmus

PROCEDURE SmoothData(VAR PlotData: TMessRec; VAR GData: TGrafRec);

VAR

234
s : Integer;

SmoothBuf : Real;

Glatt,

Abl_l,

Abl_2 : Array [-20..20] of Real;

LStr : TStrlO;

BEGIN

WITH PlotData, GData DO

BEGIN

ClearMenuStr(GData);

PReadInt('»> Chan, l&r to be smoothed? : ',-20,20,GlattNum,MenuX,MenuY,Color,BkColor,MenuStr);

FOR s:=-GlattNum TO GlattNum DO

BEGIN

Glatt[s] := 3*(3*sqr(GlattNum)+3*GlattNum-l-5*sqr(s)) /

((2»GlattNum+3)*(2*GlattNum+l)*(2*GlattNum-l));

(

ClearMenuStr(GData);

Str(Glatt[s]:10:4,LStr);

Menus tr:= LStr;

PMenuStr(GData);

)

Abl_l[s]:= 3*s /

((2*GlattNum+l)*(GlattNum+l)*GlattNum);

Abl_2[s]:= 30*(3*sqr(s)-GlattNum*(GlattNum+l)) /

((2*GlattNum+3)*(2*GlattNum+l)*(2*GlattNum-l)*(GlattNum+l)*GlattNum);

END;

SmoothBuf:= 0.0;

FOR ii:=GlattNum+l TO IntNum-GlattNum-1 DO

BEGIN

FOR s:=-GlattNum TO GlattNum DO

BEGIN

SmoothBuf:=SmoothBuf+Glatt[s]*YVal[s+ii];

END;

ActPlotData[ii]:= SmoothBuf;

SmoothBuf:= 0.0;

END;

FOR ii:=0 TO GlattNum DO ActPlotData[ii]:= -1.0*NoiseLevel;

FOR ii:=IntNum-GlattNum TO IntNum DO ActPlotData[ii]:= -1.0*NoiseLevel;

END;

END;

235

PROCEDURE CutNoise: substracts noiselevel

PROCEDURE CutNoise(VAR PIotData: TMessRec; VAR GData: TGrafRec);

VAR

ii : Integer;

BEGIN

WITH PlotData,GData DO

BEGIN

ClearMenuStr(GData);

PReadInt('»> Noise level: VlO^OOOC^NoiseLeveLMenuX^enuY^olo^BkColo^MenuStr);

FOR ii:=0 TO IntNum DO

BEGIN

YVal[ii]:= YVal[ii]-NoiseLevel;

ActPlotData[ii]:= YVal[ii];

{ IF SmoothedData[ii]<0.0 THEN SmoothedData[ii]:=0.0;)

END;

GlattNum:= 1; (CutNoise is using the ORIGINAL data in YVal!)

END;

END;

PROCEDURE HPGLFile

-i
PROCEDURE HPGLFile(VAR PIotData: TMessRec; VAR GData: TGrafRec);

BEGIN

WITH PIotData, GData DO

BEGIN

PltHP:= True;

ClearMenuStr(GData);

POurputFile('»> Pit file name: VPltFitPltDirecPltFileName

,MenuX,MenuY,Color,BkColor,MenuStr);

IF PltFileName=Esc THEN

BEGIN

EnExit:= True;

EnGrafics:= False;

CloseGraph;

NewFile:= False;

236
Exit;

END;

PltPlotStart(PltFil);

ClearDevice;

END;

END;

{

PROCEDURE YScaleSet

-I
PROCEDURE YScaleSet(VAR PlotData: TMessRec; VAR GData: TGrafRec);

BEGIN

WITH PlotData, GData DO

BEGIN

ClearMenuStr(GData);

PReadReal('»>YScaIe:',lE-2/lE2,Yscale/MenuX/MenuY,Color/BkColor;MenuStr);

NormScale:= False;

YNorm:= 1.0;

END;

END;

PROCEDURE NextFile

PROCEDURE NextFile(VAR PlotData: TMessRec; VAR GData: TGrafRec);

BEGIN

WITH PlotData, GData DO

BEGIN

ClearMenuStr(GData);

PInputFile('»> New File: VDatFil,FileDirec,FileName,MenuX,MenuY,Color,BkColor,MenuStr);

IF FileName=Esc THEN

BEGIN

EnExit:= True;

EnGrafics:= False;

CloseGraph;

NewFile:= False;

Exit;

END;

EndTrue:= True;

237
NewFile:= True;

END;

END;

PROCEDURE DataPlot

PROCEDURE DataPlot(VARPlotData: TMessRec; VARGData: TGrafRec);

VAR

i,

XPixO,

YPixO,

XPixP,

YPixP,

XPltO,

YPltO,

XPltP,

YPltP : Integer;

DelX :Real;

BEGIN

WITH PlotData, GData DO

BEGIN

DifX:= XVal[IntNum]-XVal[0];

DelX:=(XVal[IntNum]-XVal[0])/IntNum;

XPixFac:= XPix/(1.0*DifX);

XPltFac- XPlt/(1.0*DifX);

XScaling(PlotData,GData);

YScaling(PlotData,GData);

XPixO:= 0;

YPixO:=YPix-Round(-YNeg*YPixFac*YScale);

XPltO:= 0;

IF (-YNeg*YPltFac*YScale)<YPIt THEN

BEGIN

YPltO:=Round(-YNeg*YPltFac*YScale);

END

ELSE

BEGIN

YPltO:= YPlt;

238
END;

IF YPixO<0 THEN YPixO:= 0;

IF YPltO<0 THEN YPltO:= 0;

PMoveToXY(XPixO/YPixO,GData);

IF PltHP THEN

BEGIN

PltMoveToXY(XPltO,YPltO,PltFiI);

END;

FOR i:=0 TO IntNum DO

BEGIN

IF NormScale THEN

BEGIN

IF (ActPlotData[i]»YScale*YNorm)<2.0*YPos THEN

BEGIN

YPixP:=YPix-Round((ActPlotData[i]*YScale*YNorm-YNeg)»YPixFac);

YPltP:= Round((ActPlotData[i]*YScale»YNorm-YNeg)*YPltFac);

END;

END

ELSE

BEGIN

IF (ActPlotData[i]*YScale*YNorm)<2.0*YPos THEN

BEGIN

YPixP:=YPix-Round((ActPlotData[i]*YScale-YNeg)*YPixFac);

YPltP:=Round((ActPlotData[i]*YScale-YNeg)*YPltFac);

END;

END;

IF (ActPlotData[i]*YScale*YNorm)>(YPos+0.1) THEN

BEGIN

YPixP:= 0;

YPltP:= YPlt;

END;

IF (ActPlotData[i]*YScale*YNorm)<YNeg THEN

BEGIN

YPixP:= YPix;

YPItP:= 0;

END;

IF PlotType='Histo' THEN

BEGIN

XPixP:= Round((XVal[i]-XVal[0]+0.5*DelX)*XPixFac);

XPltP:=Round((XVal[i]-XVal[0]+0.5*DelX)*XPltFac);

IF XPixP>XPix THEN

239
BEGIN

XPixP:= XPix;

XPltP:= XPlt;

END;

PLineXY(XPixO,YPixO,XPixO,YPixP,GData);

PLineXY(XPixO,YPixP,XPixP,YPixP,GData);

IF PltHP THEN

BEGIN

PltLineXY(XPltO,YPltO,XPltO,YPltP,PltFil);

PltLineXY(XPltO,YPltP,XPltP,YPltP,PltFil);

END;

END;

IF PlotType='Point' THEN

BEGIN

XPixP:=Round((XVal[i]-XVal[0])*XPixFac);

XPltP:=Round((XVal[i]-XVal[0])*XPltFac);

PCircleXY(XPixP,YPixP,l,GData);

IF PltHP THEN

BEGIN

PltCircleXY(XPltP,YPltP,l,PltFil);

END;

END;

XPixO:= XPixP;

YPixO:= YPixP;

XPltO:= XPltP;

YPltO:= YPltP;

END;

END;

END;

($1 P_GrafIn) (file: P_Grafln.Pas)

(

PROCEDURE StartGraphics

PROCEDURE StartGraphics(VAR GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

Gd:= Detect;

240
Graflnit(GData);

InitGraph(Gd,Gm,GDirec);

EnGrafics:= True;

ErrCode:= GraphResuIt;

IF ErrCode <> grOK THEN

BEGIN

Writeln('Graphics error:', GraphErrorMsg(ErrCode));

END;

END;

END;

PROCEDURE StopGraphics

PROCEDURE StopGraphics(VAR GData: TGrafRec);

BEGIN

WITH GData DO

BEGIN

CloseGraph;

END;

END;

PROCEDURE PlotLoop

PROCEDURE PlotLoop(VAR PlotData: TMessRec; VAR GData: TGrafRec);

VAR

Ch :Char;

BEGIN

WITH PlotData,GData DO

BEGIN

ExirSave:= ExitProc;

ExitProc:= ©RunTimeError;

PltHP:= False;

YNorm:= 1.0;

GlattNum:= 1;

NoiseLevel:= 0;

241
Gd:= Detect;

Graflnit(GData);

InitGraph(Gd,Gm/GDirec);

EnGrafics:= True;

ErrCode:= GraphResult;

IF ErrCode = grOK THEN

BEGIN

WHILE NOT EndTrue DO

BEGIN

ClearDevice;

SetColor(CoIor);

SetBkColor(BkColor);

GetXYValMax(PlotData);

IF NormScale THEN

BEGIN

YNorm:= YPos/YValMax;

YNormSav:= YNorm;

END;

YPixFac:=YPix/(1.0*(YTop+YPos-YNeg));

YPltFac:=YPlt/(1.0*(YTop+YPos-YNeg));

PlotFrame(PlotData, GData);

DataPlot(PlotData, GData);

IF EnHrdCpy THEN

BEGIN

MenuStr:='(S)moothing/(H)ardcopy/(Y)scale/H(P)GLFile/(N)ext'

+'/N(o)ise/(E)xit:';

PMenuStr(GData);

REPEAT

Ch:= ReadKey;

UNTIL Ch IN ['syS'/h'/H'/y'/Y'/e'/E'/n'/N'/p'/P'

/o'/O'];

END

ELSE

BEGIN

MenuStr:='(S)moothing/(Y)scale/H(P)GLFile/(N)ext/N(o)ise/(E)xit:';

PMenuStr(GData);

REPEAT

Ch:= ReadKey;

UNTIL Ch IN ['sysyy'/YyeyEynyN'/pypyo'/O'];

242

1

END;

MenuStr:= MenuStr+Ch;

PMenuStr(GData);

CASE Ch OF

•h'/H': BEGIN

Hardcopy(PlotData);

END;

's'/S': BEGIN

SmoothData(PlotData,GData);

END;

y,'Y': BEGIN

YScaleSet(PlotData,GData);

END;

'n'/N': BEGIN

NextFile(PlotData,GData);

END;

'p'/P: BEGIN

HPGLFile(PlotData,GData);

END;

'o'/O': BEGIN

CutNoise(PlotData,GData);

END;

'e'/E': BEGIN

NewFile:= False;

EndTrue:= True;

IF PltHP THEN

BEGIN

PltPlotStop(PltFil);

PItHP:= False;

END;

END;

END; (CASE Ch OF...)

END;

CloseGraph;

EndTrue:= False;

ExitProc:= ExitSave;

END;

243

ELSE

BEGIN

Writeln('Graphics error:', GraphErrorMsg(ErrCode));

END;

)

END;

END;

END. I IMPLEMENTATION of P_Graf)

244

P MDATA.PAS

file : P_MDATA.PAS

function : data

author : W.Maring

changes : 12.02.93

($1 P_ComOpt}

UNIT P_MData;

{$IFDEF CPU87}

($N+)

($ELSE)

($N-|

($ENDIF1

INTERFACE

{$IFDEF Masspec)

TYPE

($IFDEF CPU87)

Real = Single;

{$ENDIF1

TArray = Array [0..2000] of Real;

TMessRec = RECORD

LowMass,

HighMass,

DifMass,

DelMass,

Mass,

URamp,

SigAverage,

Signal,

Difx,

YScale,

XValMax,

YValMax : Real;

XVal,

245
YVal,

ActPlotData : TArray;

IntNum,

IntRange,

NumScan,

NInt,

NScan : Integer;

NormScale,

NewFile,

EnExit,

PltHP : Boolean;

Comment : String[80];

PltDirec,

FileDirec,

ExeDirec,

PltFileName,

FileName : String[60];

PltFil,

DatFil : Text;

END;

{$ENDIF|

IMPLEMENTATION

END.

246

PAN_SCAN.PAS

file : PAn_Scan.PAS

function : recording and plotting of angular spectra

author : B.Ungerer (MPI Goe), W.Maring

files : P_AnData,

IO_Check.PAS

changes : 22.10.88 (BU)

09/02/93 (WM)

)

(SDEFINE AngSpecl

PROGRAM PFr_Scan;

($IFDEF CPU87|

($N+)

|$ELSE)

i$N-|

($ENDIF|

|$M 8192,0,65360} (Leave memory for child process |

USES

Crt,

Dos,

Printer,

P_AnData,

P_Cam2,

P_Graf,

IO_Check;

TYPE

ISIFDEF CPU87)

Real = Single;

j$ENDIFl

VAR

MessData : TMessRec;

DirListVar :String[20];

247
Ch : String[l];

CurDir,

SavDir : String;

ChMenul : Char;

EnExitProg : Boolean;

CONST

Esc = Char(27);

($1 P_AngIn) {file: P_AngIn.Pas|

) Main)

BEGIN

WITH MessData, GData DO

BEGIN

InitData(MessData);

REPEAT

ClrScr;

Writeln;

Writeln('P A n _ S c a n ');

WritelnC ')

Writeln;

WritelnC 1 —> record angular spectra');

WritelnC 2 -> plot angulur spectra');

WritelnC 3 -> c:\sputter\angdat listing');

Writeln;

WritelnC E -> End');

Writeln;

Write('»> Enter menu number :');

REPEAT

ChMenul:= ReadKey;

UNTIL ChMenul IN [Esc,T..'3','e7E'];

IF ChMenul=Esc THEN Exit;

Writeln(ChMenul);

REPEAT

CASE ChMenul OF

T: BEGIN

GetDir(0,CurDir);

248
SavDir:= CurDir;

($1-1

ChDir('c:\basicdir\new');

IF IOResultoO THEN

BEGIN

Writeln('Cannot find c:\basicdir\new');

END;

l$I+t

SwapVectors;

Exec(GetEnv('COMSPEC),7C'+

'c:\basicdir\new\hbasicangscan.bas');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

WriteIn('DOSError: ',DosError);

END;

ChDir(SavDir);

END;

7': BEGIN

SwapVectors;

Exec(GetEnv(GOMSPEC');/C'+ExeDirec+'pangplot.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

WriteIn('DOSError: ',DosError);

END;

END;

'3': BEGIN

Writeln;

ReadStr('DirListVar: ',DirListVar);

SwapVectors;

Exec(GetEnv('COMSPEC')/yC '+'dir/w/p '+FileDirec+DirListVar);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln(*DOSError: ',DosError);

END;

Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

END;

249
END; (CASE ChMenul OF...)

UNTIL ChMenul IN [T-T/EVe'];

UNTIL ChMenul IN ['E'/e'];

END;

END.

250

PANGPLOT.PAS

(
file : PANGPLOT.PAS

function : plotting of angular spectra

author : W.Maring

files : —

changes : 05-07-93

I

($1 P_ComOpt|

PROGRAM PAngPlot;

($IFDEF CPU87)

f$N+}

($ELSE)

($N-)

($ENDIF1

USES

Crt,

Dos,

Graph,

Printer,

P_AnData,

P_AngInp,

P_Graf,

IO.Check;

TYPE

{$IFDEF CPU87)

Real = Single;

($ENDIF)

VAR

PlotData : TMessRec;

XValMax,

YValMax,

YFac : Real;

Gd,

251
Gm,

ErrCode : Integer;

Ch : Stringp];

EnExitProg : Boolean;

CONST

Esc = Char(27);

{$1 P_AngIn| {file: P_AngIn.Pas(

(

(Main |

BEGIN

WITH PlotData, GData DO

BEGIN

EnExitProg:= False;

InitData(PlotData);

ClrScr;

Writeln;

Writeln('P A n g P1 o t');

WritelnC ');

Writeln;

InputFile('file name: ',DatFil,FileDirec,FileName);

IF FileName=Esc THEN

BEGIN

EnExitProg:= True;

Exit;

END;

StartGraphics(GData);

WHILE NewFile DO

BEGIN

InitData(PlotData);

Input(PlotData);

IF EnExitProg THEN Exit;

GData.PlotType:= 'Histo';

PlotLoop(PlotData,GData);

IF NOT NewFile THEN

BEGIN

Close(DatFil);

253

PAUGER.PAS

file : PAUGER.PAS

function : fast recording of auger spectra

author : W.Maring

files : PCAM2.PAS, ICLCHECK.PAS

changes : 22.10.88 (B.Ungerer)

09/02/93 (W.Maring)

($1 P_ComOpt)

PROGRAM PAuger;

{$rPDEF CPU87|

{$N+(

($ELSE)

{$N-}

{$ENDIF)

($M 8192,0,65360) j Leave memory for child process)

USES

Crt,

Dos,

Printer,

P_AugInp,

P_AData,

P_Cam2,

P_Graf,

ICLCheck;

TYPE

($IFDEF CPU871

Real = Single;

(SENDIF)

VAR

MessData : TMessRec;

LoLim,

254
UpLim,

SampleSpeed,

ScanSpeed,

ScaleRange,

SigAverageX,

SigAverageY,

SignalX,

SignalY : Real;

Ch : String[l];

DirListVar : String[20];

ChMenul : Char;

EnExitProg : Boolean;

CONST

Esc = Char(27);

($1 P_AugIn| (file: P_AugIn.Pas |

PROCEDURE Scanlnput

PROCEDURE Scanlnput;

VAR

Chi : Char;

InputOkay: Boolean;

BEGIN

WITH MessData DO

BEGIN

InputOkay:= False;

WHILE NOT InputOkay DO

BEGIN

OutputFile('file name: ',DatFil,FileDirec,FileName);

IF FileName=Char(27) THEN

BEGIN

EnExitProg: = True;

Exit;

END;

ReadReal('Lower Limit: ',-2000,200,LoLim);

ReadReal('Upper Limit: ',-2000,LoLim,UpLim);

ReadReal('Scan speed [sec]: ',0,1000,ScanSpeed);

255
ReadRealCScale eV/Div: ',0,200,ScaleRange);

ReadReal('Sample speed [sec]: ',0,1000,SampleSpeed);

IntNum:= Round(Round(Abs(UpLim-LoLim)/ScanSpeed)/SampleSpeed);

Readlnt('# of Sample Points: ',0,1000,NumScan);

ReadStr('Comment: ',Comment);

Writeln;

Write('»> Input okay [Y/N]:');

REPEAT

Chl:= ReadKey;

UNTIL Chi IN [Esc/n'/N'/y'/Y'];

IF Chl=Esc THEN

BEGIN

EnExitProg:= True;

Exit;

END;

Writeln(Chl);

IF (Chl='y') OR (Chl='Y') THEN

BEGIN

InputOkay:= True;

END;

Writeln;

END;'

IF EnExitProg THEN Exit;

Writeln;

Writeln;

Write('»> Press any key to START and then START on Auger Controler!');

ReadStr(",Ch);

PrintFileHeader(DatFil,FileName);

Writeln(DatFil,LoLim:5:i; ',UpLim:5:l,' ',ScanSpeed:5:l,' ',

ScaleRange:5:l,' ',SampleSpeed:8:3,' ',NumScan:4);

Writeln(DatFil,Comment);

END;

END;

(

PROCEDURE DataLoop

PROCEDURE DataLoop;

VAR

256
NInt,

NScan : Integer;

BEGIN

WITH MessData DO

BEGIN

Init_TimSca;

Writeln;

Writeln('DataLoop: START');

FOR Nlnt:=0 TO IntNum DO

BEGIN

IF NotFirstScan THEN

BEGIN

Reset_TimSca;

Start_TimSca(SampleSpeed);

END;

SigAverageX:=0.0;

SigAverageY:=0.0;

FOR NScan:=l TO NumScan DO

BEGIN

Get_ADC2(adc_c2,SignalX);

SigAverageX:= SigAverageX + SignalX;

Get_ADCl(adc_cl,SignalY);

SigAverageY:= SigAverageY + SignalY;

END; {FORNScan=...)

SignalX:=SigAverageX/(1.0*NumScan);

XVal[NInt]:= SignalX;

SignalY:= SigAverageY / (1. 0*NumScan);

YVal[NInt]:= SignalY;

ActPlotData[NInt]:= YVal[NInt];

I
Writeln('NInt= ',NInt:4,' X= ',XVal[NInt]:10:2,

' Y= ',YVal[NInt]:10:2);

I
NotFirstScan:= True;

END; (FOR NInt...)

Writeln('DataLoop: STOP');

END;

END;

257

PROCEDURE WriteData

PROCEDURE WriteData;

VAR

NInt : Integer;

BEGIN

WITH MessData DO

BEGIN

Writeln(DatFiUntNum);

FOR Nlnt:=0 TO IntNum DO

BEGIN

Writeln(DatFil,XVal[NInt]:10:4/ ',YVal[NInt]:10:4);

END;

Close(DatFil);

END;

END;

PROCEDURE MainLoop

PROCEDURE MainLoop;

VAR

Chi : Char;

BEGIN

WITH MessData, GData DO

BEGIN

EnExitProg:= False;

ClrScr;

(*** Init_Crate;(

WHILE NOT EndTrue DO

BEGIN

InitData(MessData);

Scanlnput;

IF EnExitProg THEN

BEGIN

IF NOT (FileName=Esc) THEN

BEGIN

258
Close(DatFil);

Writeln;

Writeln;

Write('»> empty ',FileName,' will be deleted [Y/N]:');

REPEAT

Chl:= ReadKey;

UNTIL Chi IN ['n'/N'/y'/Y'];

Writeln(Chl);

IF (Chl='y') OR (Chl='Y') THEN

BEGIN

Erase(DatFil); (file will be deleted if existing by Exit! (

END;

Writeln;

END;

Exit;

END;

DataLoop;

WriteData;

StartGraphics(GData);

GData.PlotType:= 'Point';

PlotLoop(MessData,GData);

WHILE NewFile DO

BEGIN

Input(MessData);

PlotLoop(MessData,GData);

END;

StopGraphics(GData);

EndTrue:= True;

END;

END;

END;

BEGIN {Main]

WITH MessData, GData DO

BEGIN

InitData(MessData);

REPEAT

ClrScr;

259
Writeln;

Writeln('P Auger');

WritelnO ');

Writeln;

Writelnf 1 -> record auger spectra');

WritelnC 2 —> plot auger spectra');

WritelnO 3 —> c:\sputter\augdat listing');

Writeln;

WritelnC E -> End');

Writeln;

Write('»> Enter menu number:');

REPEAT

ChMenul:= ReadKey;

UNTIL ChMenul IN [Esc,T..'3'/e'/E'];

IF ChMenul=Esc THEN Exit;

Writeln(ChMenul);

REPEAT

CASE ChMenul OF

'1': BEGIN

EndTrue:= False;

MainLoop;

END;

'2': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC'),7C'+ExeDirec+'paugplot.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

'3': BEGIN

Writeln;

ReadStr('DirListVar:',DirListVar);

SwapVectors;

Exec(GetEnv('COMSPEC'),7C+'dir/w/p'+FileDirec+DirListVar);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: \DosError);

END;

260
Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

END;

END; {CASE ChMenul OF...}

UNTIL ChMenul IN [T..'3yE'/e'];

UNTIL ChMenul IN ['E'/e'];

END;

END.

261

PAUGPLOT.PAS

file : PAUGPLOT.PAS

function : plotting of mass spectra

author : W.Maring

files : —

changes : 09/02/93

j$DEFINE Augspec)

PROGRAM PAugPlot;

{$IFDEF CPU87}

l$N+)

($ELSE)

i$N-}

($ENDIF)

USES

Crt,

Dos,

Graph,

Printer,

P_AData,

P_AugInp,

P_Graf,

IO_Check;

TYPE

($IFDEF CPU87}

Real = Single;

{$ENDIFj

VAR

PlotData : TMessRec;

XValMax,

YValMax,

YFac : Real;

Gd,

262
Gm,

ErrCode : Integer;

Ch : String[2];

EnExitProg : Boolean;

CONST

Esc = Chr(27);

{$1 P_AugIn) {file: P_AugIn.Pas)

(

[Main (

BEGIN

WITH PIotData, GData DO

BEGIN

EnExitProg:= False;

InitData(PlotData);

ClrScr;

Writeln;

Writeln('P A u g P1 o t');

WritelnC ');

Writeln;

InputFile('file name: ',DatFil,FileDirec,FileName);

IF FileName=Esc THEN

BEGIN

EnExitProg:= True;

Exit;

END;

StartGraphics(GData);

WHILE NewFile DO

BEGIN

InitData(PlotData);

Input(PlotData);

IF EnExitProg THEN Exit;

GData.PlotType:= 'Point';

PlotLoop(PlotData,GData);

IF NOT NewFile THEN

BEGIN

Close(DatFil);

263
END;

END;

StopGraphics(GData);

END;

END.

264

PCAMINIT.PAS

I

file : PCAMINIT.PAS

function : initilization of CAMAC crate

author : W.Maring

files : P_Cam2.PAS,

IOJZheck.PAS

changes : 06-04-93

)

PROGRAM PCamlnit;

{$IFDEF CPU87)

($N+1

($ELSE}

f$N-|

($ENDIFj

USES

Crt,

Dos,

Printer,

P_Cam2,

IO_Check;

VAR

Chi : Char;

TYPE

($IFDEF CPU87)

Real = Single;

j$ENDIF}

BEGIN

Write('»> Reset and init CAMAC crate [Y/N]:');

REPEAT

Chl:= ReadKey;

UNTIL Chi IN [Esc/n'/N'/yVY];

IF Chl=Esc THEN Exit;

265
Writeln(Chl);

IF (Chl='y') OR (Chl=T) THEN

BEGIN

Init_Crate;

END;

END.

266

PFR SCAN.PAS

file : PFR_SCAN.PAS

function : recording of frequency spectra

author : B.Ungerer (MPI Goe), W.Maring

files : P_FData,

IO.Check.PAS

changes : 22.10.88 (BU)

09/02/93 (WM)

($DEFINE FreqSpec)

PROGRAM PFr_Scan;

{$IFDEF CPU87)

($N+)

($ELSE)

($N-|

($ENDIF)

j$M 8192,0,65360) (Leave memory for child process]

USES

Crt, .

Dos,

Printer,

P_FData,

P_Cam2,

P_Graf,

IO.Check;

TYPE

{$IFDEF CPU87(

Real = Single;

{$ENDIF)

VAR

MessData : TMessRec;

DirListVar : String[20];

267
Ch : String[l];

CurDir,

SavDir : String;

ChMenul : Char;

EnExitProg : Boolean;

CONST

Esc = Char(27);

($1 P_FreqIn| (file: P_FreqIn.Pas)

[Main 1

BEGIN

WITH MessData, GData DO

BEGIN

InitData(MessData);

REPEAT

ClrScr;

Writeln;

Writeln('P F r _ S c a n');

WritelnC ');

Writeln;

WritelnC 1 —> record frequency spectra');

WritelnC 2 —> plot frequency spectra');

WritelnC 3 —> c:\sputter\freqdatlisting');

Writeln;

WritelnC E -> End');

Writeln;

Write('»> Enter menu number:');

REPEAT

ChMenul:= ReadKey;

UNTIL ChMenul IN [Esc,T..'3'/e'/E'];

IF ChMenul =Esc THEN Exit;

Writeln(ChMenul);

REPEAT

CASE ChMenul OF

T: BEGIN

GetDir(0,CurDir);

268
SavDir:= CurDir;

{$1-1

ChDir('c: \basicdir\new');

IF IOResultoO THEN

BEGIN

WriteIn('Cannot find c:\basicdir\new');

END;

($I+|

SwapVectors;

Exec(GetEnv('COMSPEC),yC '+

'c:\basicdir\new\hbasic freqscan.bas');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

ChDir(SavDir);

END;

'2': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC')//C'+ExeDirec+'pfreplot.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

'3': BEGIN

Writeln;

ReadStr('DirListVar: ',DirListVar);

SwapVectors;

Exec(GetEnv('COMSPEC');/C '+'dir/w/p '+FiIeDirec+DirListVar);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

END;

269
END; (CASE ChMenul OF...)

UNTIL ChMenul IN [T..'3yE','e'];

UNTIL ChMenul IN ['E'/e'];

END;

END.

270

PFREPLOT.PAS

file : PFREPLOT.PAS

function : plotting of angular spectra

author : W.Maring

files : —

changes : 05-07-93

{$1 P_ComOptj

PROGRAM PFrePlot;

($D?DEF CPU87}

l$N+}

($ELSE)

($N-1

)$ENDIF) .

USES

Crt,

Dos,

Graph,

Printer,

P_FData,

P_FInput,

P_Graf,

IO_Check;

TYPE

($IFDEF CPU87)

Real = Single;

($ENDIF1

VAR

PlotData : TMessRec;

XValMax,

YValMax,

YFac : Real;

Gd,

271
Gm,

ErrCode : Integer;

Ch : String[2];

EnExitProg : Boolean;

CONST

Esc = Char(27);

($1 P_FreqIn| (file: P_FreqIn.Pas(

(Main)

BEGIN

WITH PlotData, GData DO

BEGIN

EnExitProg:= False;

ClrScr;

InitData(PlotData);

Writeln;

Writeln('P F r e P1 o t');

WritelnC ');

Writeln;

InputFile('file name: ',DatFil,FüeDirec,FileName);

StartGraphics(GData);

WHILE NewFile DO

BEGIN

InitData(PlotData);

Input(PlotData);

IF EnExitProg THEN Exit;

GData.PlotType:= 'Histo';

PlotLoop(PlotData,GData);

IF NOT NewFile THEN

BEGIN

Close(DatFil);

END;

END;

StopGraphics(GData);

END;

272
END.

273

PMASPLOT.PAS

file : PMASPLOT.PAS

function : plotting of mass spectra

author : W.Maring

files : -

changes : 09/02/93

($1 P_ComOpt|

PROGRAM PMasPlot;

f$IFDEF CPU87)

{$N+!

{$ELSE|

{$N-(

{$ENDIF(.

USES

Crt,

Dos,

Graph,

Printer,

P_MData,

P_MInput,

P_Graf,

IO_Check;

TYPE

{$IFDEF CPU87)

Real = Single;

{$ENDIF)

VAR

PlotData : TMessRec;

XValMax,

YValMax,

YFac : Real;

Gd,

274
Gm,

ErrCode : Integer;

Ch : String[2];

EnExitProg : Boolean;

CONST

Esc = Char(27);

($1 P_MasIn) (file: P_MasIn.Pas)

(Main)

BEGIN

WITH PlotData, GData DO

BEGIN

EnExitProg:= False;

InitData(PlotData);

ClrScr;

Writeln;

Writeln('P M a s P1 o t');

WritelnC ');

Writeln;

InputFile('file name: ^DatFiLFileDirec^FileName);

IF FileName=Esc THEN

BEGIN

EnExitProg:= True;

Exit;

END;

StartGraphics(GData);

WHILE NewFile DO

BEGIN

InitData(PlotData);

Input(PlotData);

IF EnExitProg THEN Exit;

GData.PlotType:= 'Histo';

PlotLoop(PlotData,GData);

IF NOT NewFile THEN

BEGIN

Close(DatFil);

275
END;

END;

StopGraphics(GData);

END;

END.

276

PMASS.PAS

file : PMASS.PAS

function : fast recording of mass spectra

author : B.Ungerer (MPI Goe), W.Maring

files : P_Cam2.PAS,

P_Graf,

P_MData,

ICLCheck.PAS

changes : 22.10.88 (BU)

09/02/93 (WM)

{SDEFINE Masspec)

PROGRAM PMass;

{$IPDEF CPU87|

{$N+}

i$ELSE|

($N-)

($ENDIF)

($M 8192,0,65360) (Leave memory for child process)

USES

Crt,

Dos,

Printer,

P_MInput,

P_MData,

P_Cam2,

P_Graf,

IO_Check;

TYPE

($IFDEF CPU87)

Real = Single;

($ENDIF|

277
VAR

MessData : TMessRec;

DirListVar : String[20];

Ch : String[l];

ChMenul : Char;

EnExitProg : Boolean;

CONST

UMassFac : Real = 0.033333; (Voltage/mass conversion)

MassCorr : Real = 1.0; (Correction for mass value)

Esc = Char(27);

($1 P_MasIn) (file: P_MasIn.Pas}

I-
PROCEDURE Scanlnput

PROCEDURE Scanlnput;

VAR

Chi : Char;

InputOkay: Boolean;

BEGIN

WITH MessData DO

BEGIN

InputOkay:= False;

WHILE NOT InputOkay DO

BEGIN

OutputFile('file name: ',DatFil,FileDirec,FileName);

IF FileName=Esc THEN

BEGIN

EnExitProg: = True;

Exit;

END;

ReadReal('LowMass:',0,300,LowMass);

ReadReal('HighMass: ',LowMass,300,HighMass);

DifMass:= HighMass-LowMass;

Readlnt('# of Intervals: ',0,1000,IntNum);

DelMass:= DifMass/(1.0*IntNum);

Readlnt('# of Scans per Mass: ',0,1000,NumScan);

278
Readlnt('range 10A-x: ',5,12,IntRange);

ReadStr('Comment: ',Comment);

Writeln;

Write('»> Input okay [Y/N]:');

REPEAT

Chl:= ReadKey;

UNTIL Chi IN [Esc/n'/N'/y'/Y];

IF Chl=Esc THEN

BEGIN

EnExitProg:= True;

Exit;

END;

Writeln(Chl);

IF (Chl='y') OR (Chl=Y') THEN

BEGIN

InputOkay:= True;

END;

Writeln;

END;

IF EnExitProg THEN Exit;

Writeln;

Writeln;

Write('»> Press any key to START!');

ReadStr(",Ch);

PrintFileHeader(DatFil/FileName);

Writeln(DatFil,LowMass:5:l,' ',HighMass:5:l,' ',NumScan:4,'',

10A-',IntRange:2);

Writeln(DatFil,Comment);

Writeln(DatFiLIntNum);

END;

END;

PROCEDURE DataLoop

PROCEDURE DataLoop;

BEGIN

WITH MessData DO

BEGIN

279
Writeln;

Writeln('DataLoop: START');

FOR Nlnt:=0 TO IntNum DO

BEGIN

Mass:= LowMass+NInt*DelMass;

XVal[NInt]:= Mass;

URamp:= (Mass-MassCorr)*UMassFac;

Set_DACl(dac_c3,URamp); (** Set_DACl **}

SigAverage:= 0.0;

FOR NScan:=l TO NumScan DO

BEGIN

Get_ADC2(adc_c2,Signal);

SigAverage:= SigAverage + Signal;

Signal: = SigAverage / (1.0*NumScan);

YVal[NInt]:= Signal;

ActPlotData[NInt]:= YVal[NInt];

END; (FORNScan=...(

END; (FOR NInt= ...}

Writeln('DataLoop: STOP');

END;

END;

PROCEDURE WriteData

PROCEDURE WriteData;

BEGIN

WITH MessData DO

BEGIN

FOR Nlnt:=0 TO IntNum DO

BEGIN

Writeln(DatFil,XVal[NInt]:10:4,' ',YVal[NInt]);

END;

Close(DatFil);

END;

END;

PROCEDURE MainLoop

280

PROCEDURE MainLoop;

VAR

Chi :Char;

BEGIN

WITH MessData, GData DO

BEGIN

EnExitProg:= False;

ClrScr;

{*** Init_Crate;(

WHILE NOT EndTrue DO

BEGIN

InitData(MessData);

Scanlnput;

IF EnExitProg THEN

BEGIN

IF NOT (FileName=Esc) THEN

BEGIN

Close(DatFil);

Writeln;

Writeln;

Write('»> empty ',FiIeName,' will be deleted [Y/N]:');

REPEAT

Chl:= ReadKey;

UNTIL Chi IN ['n'/N'/y'/Y'];

Writeln(Chl);

IF (Chl=y) OR (Chl=T) THEN

BEGIN

Erase(DatFil); (file will be deleted if existing by Exit!]

END;

Writeln;

END;

Exit;

END;

DataLoop;

WriteData;

StartGraphics(GData);

GData.PlotType:= 'Histo';

PlotLoop(MessData,GData);

WHILE NewFile DO

281
BEGIN

Input(MessData);

PlotLoop(MessData,GData);

END;

StopGraphics(GData);

EndTrue:= True;

END;

END;

END;

(Main)

BEGIN

WITH MessData, GData DO

BEGIN

InitData(MessData);

REPEAT

ClrScr;

Writeln;

Writeln('P Mass');

WritelnC '),

Writeln;

WritelnC 1 —> record mass spectra');

WritelnC 2 --> plot mass spectra');

WritelnC 3 --> c:\sputter\masdat listing');

Writeln;

WritelnC E ->End');

Writeln;

Write('»> Enter menu number :');

REPEAT

ChMenul:= ReadKey;

UNTIL ChMenul IN [Esc,T..'3ye','E'];

IF ChMenul=Esc THEN Exit;

Writeln(ChMenul);

REPEAT

CASE ChMenul OF

1': BEGIN

EndTrue:= False;

MainLoop;

282
END;

'2': BEGIN

SwapVectors;

Exec(GetEnv(,COMSPEC'),,/C'+ExeDirec+'pmasplot.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

■3': BEGIN

Writeln;

ReadStr('DirListVar:',DirListVar);

SwapVectors;

Exec(GetEnv('COMSPEC')//C '+'dir/w/p '+FileDirec+DirListVar);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

END;

END; (CASE ChMenul OF...)

UNTIL ChMenul IN [T..'3'/E7e'];

UNTIL ChMenul IN [E'/e'];

END;

END.

283

PMESPROG.PAS

file : PMESPROG.PAS

function : recording mass, auger, angular or frequency spectra

author : W.Maring

files : PAn_Scan.EXE,

PAngPlot.EXE,

PAuger.EXE,

PAugPlot.EXE,

PFr_Scan.EXE,

PFrePlot.EXE,

PMass.EXE,

PMasPlot.EXE

PCamInit.EXE

changes : 21/04/93 (WM)

PROGRAM PMesProg;

($M 8192,0,65360) j Leave memory for child process]

USES

Crt,

Dos,

Printer,

IO.Check;

TYPE

TDatRec = RECORD

BasicProgFileName,

DirListVar : String[20];

CurDir,

SavDir,

ExeDir,

BasicDir : String;

DriveCh : Byte;

ChMenul,

Ch : Char;

ExecBasicProg : Boolean;

284
END;

VAR

BasicDirX : String;

Data : TDatRec

{$1 P_MesIn) {file: PMesIn.Pas}

{Main)

BEGIN

WITH DATA DO

BEGIN

InitData(Data);

REPEAT

ClrScr;

Writeln;

WriteIn('PMesPro g');

WritelnC ');

Writeln;

WritelnC 1 —> AUGER: pauger.exe');

WritelnC 2 -> MASS: pmass.exe');

WritelnC 3 ->FREQ: pfr_scan.exe');-

Writeln(' 4 — > ANGULAR: pan_scan.exe');

WritelnC 5 -> DAC: dac_test.exe');

WritelnC 6 -> BASIC: run BASIC programs');

WritelnC 7 -> DOS: dir/w/p');

WritelnC 8 —> init CAMAC: pcaminit.exe');

Writeln;

WritelnC E -> End');

Writeln;

Write('»> Enter menu number:');

REPEAT

ChMenul:= ReadKey;

UNTIL ChMenul IN [T..'8','eyE'];

Writeln(ChMenul);

REPEAT

CASE ChMenul OF

1': BEGIN

SwapVectors;

Exec(GetEnv(,COMSPEC),7C'+ExeDir+'pauger.exe');

285
SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

7': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC'),'/C '+ExeDir+'pmass.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

'3': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC,)//C'+ExeDir+'pfr_scan.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

'4': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC)//C '+ExeDir+'pan_scan.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

'5': BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC'),'/C'+ExeDir+'dac_test.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

286
END;

'6': BEGIN

ExecBasicProg:= True;

ClrScr;

GetDir(0/CurDir);

SavDir:= CurDir;

($M
BasicDirX:=Copy(BasicDir/l,(Length(BasicDir)-l));

ChDir(BasicDirX);

IF IOResultoO THEN

BEGIN

Writeln('Cannot find ',BasicDirX);

Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

ChDir(SavDir);

Exit;

END;

($1+)

Writeln;

Writeln('ccount.bas : counting of the photomultiplier signal');

Writeln('detpos.pas : new detector position');

Writeln('shutter.bas : test of the laser beam shutter');

Writeln;

Writeln;

Write('BASIC program:');

InpChar(BasicProgFileName);

IF BasicProgFileName=Char(27) THEN

BEGIN

ExecBasicProg:= False;

END;

IF ExecBasicProg THEN

BEGIN

SwapVectors;

Exec(GetEnv('COMSPEC')//C '+BasicDir+'hbasic'

+BasicProgFileName);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

287
END;

ChDir(SavDir);

END;

T: BEGIN

Writeln;

GetDir(0,CurDir);

Writeln('CurDir: ',CurDir);

Writeln;

ReadStr('[NewDir\]DirListVar:',DirListVar);

SwapVectors;

Exec(GetEnv('COMSPEC);/C '+'dir/w/p '+DirListVar);

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

Writeln;

Write('»> Press any key to continue!');

Ch:= ReadKey;

END;

'8': BEGIN

SwapVectors;

Exec(GetEnv(,COMSPEC'),7C'+ExeDir+'pcaminit.exe');

SwapVectors;

IF DosError <> 0 THEN

BEGIN

Writeln('DOSError: ',DosError);

END;

END;

END; (CASE ChMenul OF...)

UNTIL ChMenul IN [T^'/EVe'];

UNTIL ChMenul IN ['E'/e'];

END;

END.

VITA

Paul Robert Schomber was born in Texarkana, Arkansas on May 11,1961.

He received his B.S. degree in Chemistry from Oklahoma State University in

1983 and was commissioned in the United States Air Force the same year.

The Air Force selected him for advanced graduate training in 1986 and he

received his M.S. degree in Chemistry from the University of Washington in

1988. He was again selected by the Air Force for additional graduate training

in 1991. He returned to the University of Washington in September 1991 and

was awarded a Ph.D. in Physical Chemistry in March 1995.

